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ABSTRACT

This paper presents a new perspective of beamforming designs
in Coordinated Multi-Point (CoMP) downlink systemsthat are com-
bined with multicast schemes. The beamformer computation isex-
pressed asa joint matrix transformation that can be regarded as an
extension of the“Sequentially Drilled” Joint Congruence (SeDJoCo)
decomposition. A solution of the proposed joint matrix transforma-
tion is devised that takes into account the elimination of the multi-
user interference as well as the maximization of the desired signal
components. Therefore, it leads to a very effectivesemi-algebraic
solution of beamforming designsfor themulticast CoMPdownlink,
which is evident in the numerical simulations.

Index Terms— joint matrix transformations, beamforming, Co-
ordinated Multi-Point, multicast

1. INTRODUCTION

Joint matrix transformations are a crucial linear algebraic tool in
various signal processing fields such as Blind Source Separation
(BSS), Independent Vector Analysis (IVA), and beamforming for
multi-user Multiple-Input Multiple-Output (MIMO) systems [1],
[2], [3], [4]. Recently, a joint matrix transformation termed “Se-
quentially Drilled” Joint Congruence (SeDJoCo) decomposition
has been proposed [5]. It finds applications in the context of both
BSSand Coordinated Beamforming (CBF) in the multi-user MIMO
downlink. The SeDJoCo transformation is defined as follows: Given
a set ofK (conjugate-)symmetric “target matrices” of sizeK ×K
denoted byQk for k = 1, . . . ,K, find a transformation matrix
B ∈ C

K×K such that thek-th column (and thek-th row) of the
k-th transformed matrix

Dk = B ·Qk ·BH ∈ C
K×K , k = 1, . . . ,K (1)

is “drilled”, i.e., all elements in thek-th column and row are ze-
ros, except for the(k, k)-th element. This “drilled” structure of
SeDJoCo is depicted in Fig. 1. In the multi-user MIMO down-

Fig. 1. Illustration of the “drilled” structure in SeDJoCo forK = 3

link with space division multiple access, one base station equipped
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with K antennas transmits toK users each havingK receive an-
tennas. Assuming maximum ratio combining is employed at each
user terminal, the precoding vectors for theK users denoted by
fk ∈ C

K (k = 1, . . . ,K) are computed such that the multi-user
interference is mitigated. In this context, the target matrices and
the transformation matrix are constructed asQk = HH

k ·Hk and
BH =

[
f1 · · · fK

]
, respectively. HereHk ∈ C

K×K repre-
sents the channel matrix between the base station and thek-th user.
Two solutions of SeDJoCo have been proposed in [5].

In this contribution, we focus on a more sophisticated Coordi-
nated Multi-Point (CoMP) downlink systemcombined with multi-
cast schemes (cf. Fig. 2 for a three-cell example). A CBF scheme
called Extended FlexCoBF has been developed for a similar scenario
in [6], where the transmit and the receive beamformers are com-
puted jointly and iteratively. In each iteration, Extended FlexCoBF
requires the exchange of the precoded channels of the cell edge users
(e.g., User 3 in Fig. 2) among adjacent cells, resulting in transmis-
sion delays and a signaling overhead.Motivated by the intriguing
link between SeDJoCo and CBF in the multi-user MIMO downlink,
we propose a new joint matrix transformation that helps accomplish
the challenging CBF task inmulticast CoMPdownlink settings.The
solution of the proposed joint matrix transformation is inspired by
the joint multi-user MIMO system (JMMS) [7] but is largely ex-
tended from it. Via numerical simulations, we show that the pro-
posed joint matrix transformation, as an extension of SeDJoCo, is a
very effective and efficientsemi-algebraic tool forbeamforming in
multicast CoMPdownlink systems.It leads to a comparable sum
rate performance as Extended FlexCoBF but requires a significantly
smaller signaling overhead.

2. PROBLEM FORMULATION

Consider amulticast CoMPdownlink setting where the users are dis-
tinguished into cell interior users and cell edge users. An example
of a three-cell scenario is illustrated in Fig. 2. The base stations are
each equipped withMT transmit antennas.After user scheduling,
each base station serves three users.All user nodes have the same
number of receive antennas denoted asMR, and a single data stream
is sent to each user.Using a cell-specific multicast scheme,the same
signal is transmitted to the user with the same index in all the three
cells, i.e., denoting the signal for thek-th user asxk (k = 1, 2, 3),
Userk in Cell 1, Cell 2, and Cell 3 all receivexk from their corre-
sponding base stations, respectively.Userk in all three cells belong
to one multicast group [8], [9], [10], and, for instance, they could
be subscribers of the same TV programs.Here User 1 and User 2 in
each cell are treated as cell interior users. Both the inter-cell interfer-
ence and the desired signals from the adjacent cells are assumed to
be negligible due to the heavy path loss. Therefore, the cell interior
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Fig. 2. A three-cell multicast CoMP downlink scenario where two
cell interior users and one cell edge user are served in each cell

users only receive signals from their own base station and suffer only
from the intra-cell interference, i.e., the multi-user interference as in
the single-cell multi-user MIMO downlink scenarios. On the other
hand, User 3 is a cell edge user and is affected by both the intra-cell
interference and the inter-cell interference. The fact that each cell
edge user receives the desired signals from the base stations in the
adjacent cells is exploited. Joint transmissions of the neighboring
cells to the cell edge user are considered to combat the interference
and to deal with the greater path loss compared to the cell interior
users.

To avoid cumbersome notations, we take this example to present
the data model and the solution in Section 3. The extension to a more
general case is addressed at the end of Section 3. The received signal
of Userm as a cell interior user (m = 1, 2) in Cell n (n = 1, 2, 3)
is expressed as

rm,n = Hm,n · fm,n · xm +Hm,n ·
∑

ℓ6=m

fℓ,n · xℓ + nm,n, (2)

whereHm,n ∈ C
MR×MT denotes the channel matrix from the base

station in Celln to Userm, xm represents the signal for Userm, and
fℓ,n ∈ C

MT is the precoding vector computed at the base station of
Celln for Userℓ (ℓ = 1, 2, 3). In this example,MT = MR = 3 and
is equal to the number of users served by each cell. It can be seen
that for a cell interior user, assuming that the inter-cell interference
is negligible, the transmission from the base station in its own cell is
the same as in a single-cell multi-user MIMO downlink system. On
the other hand, the received signal of User 3 is written as

r3 =
∑

n=1,2,3

H3,n · f3,n · x3 +
∑

n=1,2,3

(H3,n ·
∑

ℓ=1,2

fℓ,n · xℓ) + n3.

Based on the maximum ratio combining criterion, we define the
receive combining vectors as follows

wm,n = Hm,n · fm,n, m = 1, 2, n = 1, 2, 3 (3)

w3 =
∑

n=1,2,3

H3,n · f3,n. (4)

For a cell interior user, Userm (m = 1, 2) in Cell n (n = 1, 2, 3),
achieving zero interference via the design of the beamforming vec-
tors requiresfH

m,n ·HH
m,n ·Hm,n · fℓ,n= 0, whereℓ 6= m. For

User 3, as a cell edge user, the desired component can be expressed
as
∑

n=1,2,3

f
H
3,n ·HH

3,n · (H3,1 · f3,1 +H3,2 · f3,2 +H3,3 · f3,3) · x3.

To guarantee zero interference for User 3, the following has to be
fulfilled for ℓ = 1, 2

∑

n=1,2,3

f
H
3,n ·HH

3,n · (H3,1 · fℓ,1 +H3,2 · fℓ,2 +H3,3 · fℓ,3) = 0.

To formulate the coordinated beamforming task described above
into a joint matrix transformation problem, we define transformation
matricesBn (n = 1, 2, 3) with respect to Celln

B
H
n =

[
f1,n f2,n f3,n

]
∈ C

3×3. (5)

The target matrices can be distinguished into two sets, i.e.,

Q
(n,n)
m = H

H
m,n ·Hm,n, m = 1, 2, 3, n = 1, 2, 3

that are all Hermitian matrices and

Q
(1,2)
3 =H

H
3,1 ·H3,2, Q

(1,3)
3 =H

H
3,1 ·H3,3, Q

(2,3)
3 =H

H
3,2 ·H3,3.

The resulting joint matrix transformation is illustrated in Fig. 3.

Fig. 3. Illustration of the proposed joint matrix transformation

3. SOLUTION OF THE PROPOSED MATRIX
TRANSFORMATION

The aforementioned joint matrix transformation can be reformulated
into (D1, D2, andD3 are also illustrated in Fig. 3)

D1=
[
B1 B2 B3

]
·




Q
(1,1)
1 0 0

0 Q
(2,2)
1 0

0 0 Q
(3,3)
1


·




BH
1

BH
2

BH
3




D2=
[
B1 B2 B3

]
·




Q
(1,1)
2 0 0

0 Q
(2,2)
2 0

0 0 Q
(3,3)
2


·




BH
1

BH
2

BH
3




D3=
[
B1 B2 B3

]
·




Q
(1,1)
3 Q

(1,2)
3 Q

(1,3)
3

Q
(2,1)
3 Q

(2,2)
3 Q

(2,3)
3

Q
(3,1)
3 Q

(3,2)
3 Q

(3,3)
3


·




BH
1

BH
2

BH
3


 ,

where thek-th row and column ofDk (k = 1, 2, 3) are “drilled”,
i.e., except for the(k, k)-th element, the restof the elements are
zeros.
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Let us defineT (n)
i,j ∈ C

3×3 (i = 1, 2, i < j, n = 1, 2, 3), such
that

T
(n)
i,j (i, i) = pn, T

(n)
i,j (i, j) = qn, (6)

T
(n)
i,j (j, i) = rn, T

(n)
i,j (j, j) = sn, (7)

whereas the rest of the diagonal elements ofT
(n)
i,j are ones, and the

rest of the off-diagonal elements are zeros. Here for a matrixA we
useA(i, j) to denote its(i, j)-th entry. Based on successive Jacobi
rotations [11], the transformation matrices and the target matrices
are updated via

Bn ← T
(n)H

i,j ·Bn, n = 1, 2, 3 (8)

Q
(n,n)
k ← T

(n)H

i,j ·Q(n,n)
k · T (n)

i,j , k = 1, 2, 3, n = 1, 2, 3 (9)

Q
(n1,n2)
3 ←T

(n1)
H

i,j ·Q(n1,n2)
3 ·T (n2)

i,j , (n1, n2)=(1, 2), (1, 3), (2, 3).

(10)

Notice that the updatedQ(n,n)
k andQ(n1,n2)

3 resemble their old ver-
sions before the updating in (9) and (10) except for thei-th andj-th
columns and rows. Then instead of the joint matrix transformation
defined at the very beginning of this section, the following one with
a reduced dimension is considered

D
′
k =




p1 q1
r1 s1
p2 q2
r2 s2
p3 q3
r3 s3




H

·Q′
k ·




p1 q1
r1 s1
p2 q2
r2 s2
p3 q3
r3 s3



∈ C

2×2, (11)

where fork = 1, 2

Q
′
k =




Q̃
(1,1)
k 0 0

0 Q̃
(2,2)
k 0

0 0 Q̃
(3,3)
k


 ∈ C

6×6 (12)

with

Q̃
(n,n)
k =

[
Q

(n,n)
k (i, i) Q

(n,n)
k (i, j)

Q
(n,n)
k (j, i) Q

(n,n)
k (j, j)

]
, n = 1, 2, 3, (13)

andQ′
3 =




Q̃
(1,1)
3 Q̃

(1,2)
3 Q̃

(1,3)
3

Q̃
(2,1)
3 Q̃

(2,2)
3 Q̃

(2,3)
3

Q̃
(3,1)
3 Q̃

(3,2)
3 Q̃

(3,3)
3


 ∈ C

6×6. Each two-by-

two element matrix ofQ′
3 is defined similarly as (13). In addition,

D′
k in (11) is linked toDk (k = 1, 2, 3) via

D
′
k =

[
Dk(i, i) Dk(i, j)
Dk(j, i) Dk(j, j)

]
∈ C

2×2. (14)

Note thatDk(k, k) is the desired component, and the rest of the
elements on thek-th row as well as thek-th column should be nulled,
wherek = 1, 2, . . . ,K. Therefore, for a certain pair of(i, j), only
D′

i andD′
j (i.e.,k = i or k = j) are relevant. It is then desired to

findT
(n)
i,j , i.e.,pn, qn, rn, andsn (n = 1, 2, 3) to achieve the nulling

of Di(i, j) andDj(i, j) as well as the maximization of|Di(i, i)|
and|Dj(j, j)|. This is equivalent to

max
pn,qn,rn,sn
(n=1,2,3)

(∣∣D′
i(1, 1)

∣∣2 +
∣∣D′

j(2, 2)
∣∣2
)
, (15)

and in the meantime minimizing the off-diagonal elements ofD′
i ∈

C
2×2 andD′

j ∈ C
2×2.

For i = 1 andj = 2 (both “i” and “j” correspond to the indices
of cell interior users),T (n)

i,j (n = 1, 2, 3) are calculated separately,
each similar to the case of the single-cell multi-user MIMO downlink
in [7]. It is due to the fact that the cell interior users are only affected
by the intra-cell interference, and the transmission from each base
station to its corresponding cell interior users resembles that in a
single-cell multi-user MIMO downlink setting. This also leads to
the block diagonal structure ofQ′

1 andQ′
2 in (12). The desired

T
(n)
i,j is obtained by equivalently solving the channel diagonalization

problem of a two-user system (with respect toD′
i andD′

j) where the
maximization of the signal-to-interference ratio is achieved [7]. First
compute the eigenvalue decomposition (EVD) ofQ̃

(n,n)
j ∈ C

2×2

Q̃
(n,n)
j = V

(n,n)
j ·Λ(n,n)

j · V (n,n)H

j , (16)

and then defineW (n,n)
j = V

(n,n)
j · Λ(n,n)

−

1

2

j as a “whitening”

matrix. Further calculate the EVD ofW (n,n)H

j · Q̃(n,n)
i ·W (n,n)

j ∈
C

2×2 and obtainE(n,n)
i containing the eigenvectors that correspond

to its eigenvalues sorted in a descending order. Finally,pn, qn, rn,
sn are obtained via

[
pn qn
rn sn

]
= W

(n,n)
j ·E(n,n)

i ·
[

a1 0
0 a2

]
, (17)

where a1 and a2 are chosen to normalize the two columns of
W

(n,n)
j ·E(n,n)

i , respectively.
On the other hand, ifi = 1 or 2 andj = 3 (“ i” and “j” corre-

spond to the indices of a cell interior user and a cell edge user, re-
spectively), we follow the same philosophy described above for the
case wherei = 1 andj = 2 and propose a way of obtainingT (n)

i,j

(n = 1, 2, 3) jointly. We first compute the EVD of̃Q(n,n)
i ∈ C

2×2

for n = 1, 2, 3, respectively, and obtainV (n,n)
i ∈ C

2×2 that con-
tains the eigenvectors of̃Q(n,n)

i . The eigenvectors correspond to the
eigenvalues sorted in a descending order. Define

W
′
i =




V
(1,1)
i

V
(2,2)
i

V
(3,3)
i


 ∈ C

6×2, (18)

and computeΣi = W ′H

i ·Q′
i ·W ′

i ∈ C
2×2. HereΣi is a di-

agonal matrix whose diagonal elements are actually the sum of the
corresponding eigenvalues of̃Q(n,n)

i ∈ C
2×2 (n = 1, 2, 3). The

whitening matrixWi is obtained asWi = W ′
i · Σ

− 1

2

i ∈ C
6×2.

Then, we further calculate the EVD ofWH
i ·Q′

3 ·Wi ∈ C
2×2 and

obtainE3 ∈ C
2×2 that containsthe eigenvectors (the correspond-

ing eigenvalues are also sorted in a descending order). Finally, the
unknown elements inT (n)

i,j are computed as




p1 q1
r1 s1
p2 q2
r2 s2
p3 q3
r3 s3



= Wi ·E3 ·

[
0 a1

a2 0

]
. (19)

Note that the two columns ofWi · E3 should be normalized such
that the two-norm of each column is

√
3, as the number of cells
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considered in this example is three. In addition. the permutation of
the columns ofWi ·E3 in (19) results from the roles ofQ′

i andQ′
j

in the computation ofT (n)
i,j as compared to (17).

The transformation matrices are initialized asBn = I3 for n =
1, 2, 3, respectively. At the end of each sweep, the transformation
matrices and the target matrices are updated via (8), (9), and (10).
For the convergence, we can track either the residual interference or
the following term

ǫ =
∑

n=1,2,3

|pn − 1|2 + |qn|2 + |rn|2 + |sn − 1|2. (20)

When the convergence is achieved,ǫ is close to zero, andT (n)
i,j (n =

1, 2, 3) are close to identity matrices.
Remarks:
(i) The proposed joint matrix transformation scheme is espe-

cially effective for the case where there is a single cell edge user,
as shown in Section 4. In such scenarios, it provides a performance
comparable with that of aCBF algorithm. Due to the limited spa-
tial capacity of a base station, user scheduling is usually conducted
before precoding. A single cell edge user can be scheduled for each
transmission.

(ii) When there are more thanonecell edgeuser, for a certain
pair of indices(i, j), there exists a third case where both “i” and
“j” correspond to the indices of cell edge users. To obtainT

(n)
i,j

(n = 1, . . . , N with N denoting the number of cells), a whitening

matrix is computed asWj = Vj ·Λ− 1

2

j , where the columns ofVj are
the eigenvectors ofQ′

j , andΛj is a diagonal matrix whose diagonal
elements are the corresponding eigenvalues. Finally, the stacking of[

pn qn
rn sn

]
for n = 1, . . . , N (similar as the left-hand side of (19)

for N = 3) is obtained asWj ·Ei ·
[

a1 0
0 a2

]
, whereEi contains

the two eigenvectors ofWH
j ·Q′

i ·Wj that correspond to its largest
and smallest eigenvalues.

4. SIMULATION RESULTS AND CONCLUSIONS

In this section, we evaluate the performance of the proposed joint
matrix transformation. Twomulticast CoMPdownlink settings are
considered. The first is a three-cell case similar to the example sce-
nario depicted in Fig. 2, while the number of cell interior users in
each cell is three, leading to the fact that there are ten users in total.
In addition, a six-user two-cell scenario is investigated, where each
cell serves two cell interior users, and there are two cell edge users.
In both scenarios,MT = MR = 4. The path loss of the cell edge
user is assumed to be 10 times larger than that for the cell interior
users [6]. Here the SNR is defined asPT/σ

2
n, wherePT represents

the transmit power of each cell, andσ2
n denotes the noise variance.

The global channel state information is available at all base stations.
For each setting, both the Extended FlexCoBF algorithm [6] and the
proposed extension of SeDJoCo are employed to compute the beam-
former. The Frobenius norm square ofBn (n = 1, . . . , N ) is scaled
to PT to fulfill the total transmit power constraint and to guarantee
a fair comparison of these two methods. The resulting comparison
of the sum rate performance of these two schemes are presented in
Fig. 4. It can be seen that for the scenario with a single cell edge
user, the extension of SeDJoCo achieves a similar performance as
Extended FlexCoBF, indicating that this new joint matrix transfor-
mation is a very promising linear algebraic tool for beamforming in
themulticast CoMPdownlink system. On the other hand, when there
are two cell edge users, Extended FlexCoBF slightly outperforms the
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Fig. 4. Performance comparison between Extended FlexCoBF and
the proposed joint matrix transformation(averaged over 500 trials)

extension of SeDJoCo. This observation leads to the conjecture that
when both “i” and “j” in a certain sweep correspond to the indices
of cell edge users, there might exist better ways of computingT

(n)
i,j

(n = 1, . . . , N ) such that the performance of the proposed joint ma-
trix transformation is improved.

Fig. 5 shows the convergence behavior of the proposed extension
of SeDJoCo. For eachmulticast CoMPdownlink setting described

0 10 20 30 40 50 60 70

10
−15

10
−10

10
−5

10
0

10
5

number of iterations

ε

 

 

three−cell, one cell edge user, ten users in total
two−cell, two cell edge users, six users in total

Fig. 5. Convergence behaviorwith respect toǫ of the proposed joint
matrix transformation (10 independent trials)

above, 10 independent trials have been simulated. We observe that
especially in the three-cell case with a single cell edge user, the con-
vergence of the extension of SeDJoCo is fast. To obtain the sum rate
results shown in Fig. 4, it is enough to set a threshold ofǫ as10−5,
i.e., onceǫ falls below10−5, no further iterations are needed. Note
that as a CBF scheme, Extended FlexCoBF computes the transmit
and receive beamformers jointly and iteratively [6]. For example,
with a threshold for the residual interference set to10−5 [6] and the
maximum number of iterations set to 100, the mean number of itera-
tions required by Extended FlexCoBF in the three-cell case is around
47. Due to limited space, detailed complexity comparison between
these two schemes is not included in this paper. Still, it is worth
mentioning that for each sweep (each pair of(i, j)), the extension of
SeDJoCo considers joint matrix transformations with a reduced di-
mension (cf. (11)). Consequently, the increase of complexity caused
by the increased number of cells or users is limited.In addition, for
each iteration of Extended FlexCoBF, to update the receive beam-
forming vector for each cell edge user (e.g., (4) for User 3 in the
example scenario depicted in Fig. 2), the base stations of neighbor-
ing cells have to exchange the precoded channels. By contrast, such
an information exchange is not required for the proposed extension
of SeDJoCo, leading to a smaller signaling overhead.
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