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ABSTRACT

In this paper, an efficient hybrid beamforming architecture combin-
ing analog and digital beamforming is proposed to reduce the num-
ber of radio frequency (RF) chains. It provides a good compromise
between the higher degree of freedom of digital beamforming and
hardware cost and complexity. In this hybrid system, two bit RF
phase shifters are used as analog beamformers due to the fact that
this enables the conversion of the combinatorial optimization prob-
lem to a continuous programming formulation. The overall opti-
mization problem for the joint design of digital and analog beam-
forming weights is formulated as a quadratic-cost problem which
can be solved iteratively by exact penalty and semidefinite program-
ming. Simulation results show that the proposed method designs
hybrid beamformer effectively and it performs better than antenna
selection for the given multicasting problem.

Index Terms— Transmit beamforming, multicast beamform-
ing, hybrid beamforming, semidefinite programming

1. INTRODUCTION

Multicast beamforming is a well known space diversity technique for
transmitting common information to different groups of subscribers.
It is a part of the Evolved Multimedia Broadcast Multicast Service
(eMBMS) in the Long-Term Evolution (LTE) standard for efficient
delivery of multicast services such as audio and video streaming.
It utilizes channel state information (CSI) together with an antenna
array at the transmitter side to steer power in the desired directions
effectively [1].

In this paper, a special case of multicast beamforming, namely
single group multicast or broadcast beamforming is considered. In
single group multicasting, there is only one group with each user
subscribing for the same data stream. In the design of beamformer
coefficients, the main goal is to minimize the transmitted power
while ensuring that the received signal-to-noise ratio (SNR) of each
user is above a certain threshold. This problem was initially studied
in [2]. A simple and effective solution for digital multicast beam-
forming is proposed recently in [3]. Although the full capacity is
achieved with digital beamforming, it requires a separate RF chain
for each antenna and hence its cost and complexity are high in sev-
eral applications. Different methods are proposed in the literature to
overcome this limitation. As the antenna technology and fabrication
techniques develop, antennas become cheaper and antenna selection
strategy is shown to be a good low-cost alternative to increase spa-
tial diversity [1], [4]. Another efficient method is the use of analog
beamforming structure where only one RF chain is needed with RF
phase shifters and amplifiers [5]. In practice, the elements of the
beamformer weight vector can take values from finite discrete sets
in this scenario. This problem is solved in an optimum manner in [5]

by converting the original nonlinear integer programming problem
to mixed integer linear form.

Recently, hybrid beamformer structures with analog and digi-
tal parts are proposed as a good alternative to decrease hardware
cost while maintaining comparable performance with respect to the
completely digital beamformer [6], [7]. In this paper, we propose a
special hybrid beamforming structure as shown in Fig. 1 for single
group multicast beamforming. To the best of our knowledge, this is
the first work which considers hybrid beamforming in the context of
single group multicasting. In this hybrid structure, the number of RF
chains is less than the antennas and each RF chain is followed by
several RF phase shifters. The signal is first processed by the digi-
tal beamformer which is then transferred to the analog beamformer
composed of RF phase shifters. Most practical RF phase shifters
can supply only discrete phase changes [7]. In the proposed sys-
tem, two bit RF phase shifters are used due to simplicity, low cost
and effective problem formulation for the joint beamformer design.
The use of two bits allows us to express the complex combinatorial
problem as a continuous optimization form leading to effective so-
lution with semidefinite programming. The resulting problem has
a semidefinite programming structure except the nonconvex rank
one constraint. The common technique for the solution of such a
problem is semidefinite relaxation (SDR) [2], [8]. Although SDR
is an efficient method for most problems in communication and sig-
nal processing, its performance is shown to degrade significantly as
the number of variables increases in multicasting [9]. In our case,
the non-differentiable rank constraint is converted to an equivalent
quadratic constraint which is more manageable. This new constraint
is moved to the objective function by exact penalty method and then
the problem is solved iteratively. The solution at each iteration is op-
timum and the convergence is guaranteed. Several simulations are
done to show the performance of the proposed method.

2. SYSTEM MODEL
Hybrid beamforming structure as shown in Fig. 1 is considered in a
multicasting scenario. The transmitter broadcasts a common infor-
mation to each user with a single antenna. Hybrid beamformer con-
sists of two stages, namely digital and analog beamformers which
should be jointly designed for an effective power utilization. This
structure presents a trade-off between the performance and the num-
ber of RF chains. When the number of RF chains is the same as the
number of antennas (completely digital beamformer), the best per-
formance is achieved. If the number of RF chains is less than the
number of antennas (i.e., hybrid beamformer), the system cost is de-
creased while there is a certain performance loss. In Fig. 1, there
are L RF chains. Each RF chain is followed by M RF phase shifters
where each one is connected to a separate antenna. The total number
of antennas is LM .

In this paper, digital and analog beamformer coefficients are
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Fig. 1. Hybrid Beamforming System

jointly designed such that the quality of service (QoS) constraints
are satisfied with minimum transmit power. The transmitted signal
is x(t) = s(t)w where s(t) is the information signal and w =
[ w1,1 ... w1,M w2,1 ... w2,M ... wL,1 ... wL,M ]T is the LM × 1
complex beamformer weight vector where wl,m = wle

jθl,m . wl is
the digital beamformer coefficient corresponding to the lth RF chain
as in Fig. 1. θl,m corresponds to the phase of the mth RF phase
shifter following the lth RF chain. The received signal at the kth

user is given as,

yk(t) = hHk x(t) + nk(t) k = 1, ..., N (1)

where hHk is the 1 × LM complex channel vector for the kth user
and nk is the additive noise uncorrelated with the information signal.
The noise variance is σ2

k. SNR for the kth user can be written as,

SNRk =
σ2
s |wHhk|2

σ2
k

(2)

where σ2
s is the signal variance. σ2

s = 1 is selected without loss of
generality throughout the paper.

In the QoS based multicast beamforming, the beamforming
weight vector, w, is chosen to minimize the transmitted power such
that the SNR need of each user is satisfied. Furthermore, the ele-
ments of the beamforming weight vector, w, should be the phase
shifted versions of the digital weights w1, w2, ..., wL. Note that
the amplitude of the complex weights inside each phase shifter
group should be the same, i.e., |wl| = |wl,m| for m = 1, ...,M and
l = 1, ..., L. Note also that θl,1 = 0 (i.e.,wl,1 = wl) for l = 1, ..., L
can be selected without loss of generality since this phase can be
added to the digital beamformer coefficient wl. RF phase shifters
usually provide discrete set of phase angles. Small number of bits
in phase shifters is advantageous in terms of hardware complexity
and stability. Furthermore, the system cost and the complexity are
decreased for large scale antenna systems generating a convenient
structure applicable to different areas such as massive MIMO and
mmWave systems [7]. It turns out that the joint beamformer design
has an important simplification when two bit RF phase shifters are
used. This is due to the fact that for the two bit case, the discrete
constraints can be written in terms of linear equality and inequali-

ties. This is unique to the two bit structure and cannot be extended
to higher bits easily.

In a two bit phase system, there are four possible discrete val-
ues for the phase shifters, i.e., wl,m/wl,1 ∈ {1, j,−1,−j}, m =
2, ...,M , l = 1, ..., L.

Assuming that the CSI is available at the base station, the QoS
based optimization problem can be expressed as,

min
w∈CLM

wHw (3.a)

s.t. wHRkw ≥ γkσ2
k, k = 1, ..., N (3.b)

wl,m
wl,1

∈ {1, j,−1,−j}, m = 2, ...,M, l = 1, ..., L (3.c)

where γk is the minimum SNR need for the kth user and Rk =
hkh

H
k . The above problem is not convex and has a combinatorial

nature. The common technique to solve such problems is the matrix
lifting by introducing W = wwH . In this case, the above problem
can be written as,

min
W∈CLM×LM

Tr{W} (4.a)

s.t. T r{RkW} ≥ γkσ2
k, k = 1, ..., N (4.b)

Wl,l(m, 1)

Wl,l(1, 1)
∈ {1, j,−1,−j}, (4.c)

m = 2, ...,M, l = 1, ..., L

W � 0 (4.d)
rank(W) = 1 (4.e)

where Wl1,l2(m1,m2) denotes the (m1,m2)-th entry of the
(l1, l2)-th M × M submatrix of W. The optimization problem
in (4) is still nonconvex due to (4.c) and (4.e).

Lemma 1: The constraints in (4.c) can be expressed as linear
equality and inequalities as follows,

−Wl,l(1, 1)√
2

≤ Re(Wl,l(m, 1)e
jπ/4) ≤ Wl,l(1, 1)√

2
(5.a)

−Wl,l(1, 1)√
2

≤ Im(Wl,l(m, 1)e
jπ/4) ≤ Wl,l(1, 1)√

2
(5.b)

Wl,l(m,m) =Wl,l(1, 1), m = 2, ...,M, l = 1, ..., L (5.c)

Proof: |Wl,l(m, 1)| =Wl,l(m,m) =Wl,l(1, 1) from (4.e) and
(5.c). Hence, (Re(Wl,l(m, 1)e

jπ/4))2+(Im(Wl,l(m, 1)e
jπ/4))2 =

Wl,l(1, 1)
2. In addition, (Re(Wl,l(m, 1)e

jπ/4))2 ≤ Wl,l(1, 1)
2/2

and (Im(Wl,l(m, 1)e
jπ/4))2 ≤ Wl,l(1, 1)

2/2 by (5.a-b). It turns
out that (5.a-c) imply that Re(Wl,l(m, 1)e

jπ/4) = ±Wl,l(1, 1)/
√
2

and Im(Wl,l(m, 1)e
jπ/4) = ±Wl,l(1, 1)/

√
2. As a result,

Wl,l(m, 1)/Wl,l(1, 1) ∈ {1, j,−1,−j} which is the condition in
(4.c). �

When (4.c) is replaced by (5), the optimization problem in (4)
can be solved using semidefinite relaxation by dropping the rank
condition [10]. Let us denote the solution found by semidefinite
relaxation as Ŵ and the principal eigenvector of Ŵ as ŵ = P(Ŵ).
If the solution matrix Ŵ has rank one then ŵŵH = Ŵ and ŵ is
the optimum beamforming weight vector. In SDR, rank one solution
is not guaranteed, and it may return unacceptable solutions in certain
problems including (4). In [9], an effective approach is presented for
the semidefinite programming problems with rank one constraint. In
this paper, the joint optimization problem is converted to a suitable
form in order to employ the technique in [9]. This process does not
change the number of variables.
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3. EQUIVALENT PROBLEM
In this paper, the original problem in (4) with rank condition is con-
verted into an equivalent form which admits more flexible and man-
ageable solutions. In order to obtain this equivalent form, the ap-
proach presented in [9] is used. Here, only the results are given and
the details of the method can be found in [9].

Lemma 2: For a Hermitian symmetric, positive semidefinite ma-
trix W, the condition in (6) necessitates W being a rank one matrix.

(Tr{W})2 − Tr{W2} ≤ 0 (6)

Using Lemma 2, the rank constraint in (4.e) can be replaced by (6).
The only nonconvex constraint (6) can be moved into the objective
function using exact penalty approach [11], [12], [13]. The follow-
ing lemma establishes the equivalency of the new form and (4).

Lemma 3: ([12], page 487): The problem in (4) is equivalent
to the problem in (7) for µ > µ0 with µ0 being a finite positive
value in the sense that any local minimum of the problem in (4),
which satisfies the second order sufficiency conditions, is also a local
minimum of the problem in (7).

min
W∈CLM×LM

Tr{W}+ µmax(0, (Tr{W})2 − Tr{W2}) (7)

s.t. (4.b), (4.d), (5.a), (5.b), (5.c)

max(0, (Tr{W})2 − Tr{W2}) corresponds to an exact
penalty function [12], [14]. Note that max(0, (Tr{W})2 −
Tr{W2}) = (Tr{W})2−Tr{W2}, and (7) can be expressed as,

min
W∈CLM×LM

Tr{W}+ µ((Tr{W})2 − Tr{W2}) (8)

s.t. (4.b), (4.d), (5.a), (5.b), (5.c)

The problem in (8) is still nonconvex. However, the objective and
constraint functions are twice differentiable and hence more man-
ageable than the initial problem in (4). Alternating minimization
can be used to solve the problem in (8) using convex optimization
[15], [16]. At the iteration k, with the fixed Wk−1, we can obtain
Wk by solving the following semidefinite programming problem,

min
W∈CLM×LM

Tr{W}+ µ(Tr{Wk−1}Tr{W}

−Tr{Wk−1W}) (9)
s.t. (4.b), (4.d), (5.a), (5.b), (5.c)

Then we alternate the fixed variable and find Wk+1 while fixing
Wk. This alternating optimization is continued until convergence.

4. ALTERNATING MINIMIZATION ALGORITHM
In the previous parts, the problems in (4) and (8) are shown to be
equivalent in the sense that they have the same local minima under
certain constraint qualifications [14]. Furthermore, it is shown that
(8) can be solved with alternating minimization. The convergence of
this approach is guaranteed [9]. The steps for the alternating mini-
mization algorithm for the hybrid beamforming can be presented as
follows,

Hybrid Beamforming Algorithm (HBA)

Let λmax(W) be the maximum eigenvalue of the matrix W.
Initialization: k = 0,

Solve (9) for W0 while fixing W−1 as zero matrix. Set a proper µ.
Iterations: k = k + 1

1) Solve (9) for Wk while fixing Wk−1. If rank(Wk) = 1 go to
step 4.
2) If λmax(Wk)

Tr{Wk} ≥ β λmax(Wk−1)

Tr{Wk−1} (improved solution), where
β > 1 is a proper positive threshold value (Ex: 1.5), keep the value
of µ same. Otherwise, increase µ (Ex: µ→ 2µ)
3) Terminate if the maximum iteration number, k = kmax, is
reached.
End:
4) If rank(Wk) = 1, take the beamformer weight vector as the
principal eigenvector of the matrix Wk. Otherwise, select the
elements of the beamformer weight vector as,

wl,1 =
√
W k
l,l(1, 1)e

∠(Wk
l,1(1,1)/W

k
1,1(1,1)) (10.a)

wl,m = wl,1e
θ̂(∠(Wk

l,l(m,1)/W
k
l,l(1,1))) (10.b)

m = 2, ...,M, l = 1, ..., L

where θ̂(∠(W k
l,l(m, 1)/W

k
l,l(1, 1))) is the quantized angle such that

θ̂(∠(W k
l,l(m, 1)/W

k
l,l(1, 1))) ∈ {0, π/2, π, 3π/2}.

5) If necessary, scale w properly such that all SNR constraints are
satisfied.

HBA searches the rank one solution in the neighborhood of the
solution found by the semidefinite relaxation at the initial step of
the algorithm. This process does not guarantee to find the global
optimum solution.

It can be easily shown that the worst case complexity of HBA
at each iteration using interior point methods is O(

√
LMlog(1/ε))

iterations where ε is the accuracy of the solution at termination. Each
iteration requires at most O((LM)6 + (5L(M − 1) +N)(LM)2)
arithmetic operations [17].

5. SIMULATION RESULTS
The proposed method, HBA, is the first approach in the literature for
the solution of multicast beamforming problem in the context of a
hybrid structure. HBA is an effective algorithm and can be imple-
mented easily using standard convex programming solvers such as
CVX [18]. Several simulations are done in order to show the perfor-
mance of the proposed approach.

The minimum SNR threshold and the noise variance for each
user are selected as γk = 10 and σ2

k = 1, respectively. The initial
value of the penalty parameter is µ = 1 and the threshold parame-
ter is β = 1.5 in HBA. HBA terminates after the maximum number
of iterations kmax = 25 is exceeded. The channel coefficients are
chosen from the circularly symmetric complex Gaussian distribution
with zero mean and unit variance. The average of 100 random chan-
nel realizations is presented for each experiment.

Fig. 2 shows the transmitted power for different number of
users, N , and RF chains, L. There are LM = 32 antennas and the
number of antennas is kept constant for all experiments. L = 32,
M = 1 case is for the full digital beamformer whereas L = 1,
M = 32 is for a complete analog beamformer. The remaining lines
in this figure correspond to different hybrid beamformers. The per-
formance of the proposed algorithm is compared with SDR lower
bound for full digital beamforming, i.e., L = 32, M = 1. SDR
lower bound presents the optimum objective value of (4) without
rank condition. While this bound may not be achievable, and the
solution can have rank greater than one, it allows us to evaluate the
performance of the proposed approach effectively. As it is seen from
Fig. 2, full digital beamformer performance is very close to the SDR
lower bound. Furthermore, the results for different L and M are
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uniformly aligned indicating the effectiveness of the proposed ap-
proach. LM = 32 is kept constant. Hence, as the number of RF
chains, L, increases, the transmitted power decreases as expected.
However, the decrease in L together with an increase in M compen-
sates the required power to a certain extent allowing effective hybrid
structures with small number of RF chains. Another important ob-
servation is that the gap between full analog and digital beamforming
increases with the number of users, reaching approximately 6 dB for
N = 20 users.

In Fig. 3, a similar setup with Fig. 2 is used while the number
of antennas is changed, i.e., LM = 64. A similar characteristics
for the performance difference between the SDR lower bound and
full digital beamforming is observed. When LM = 64, transmitted
power decreases almost 3 dB compared to LM = 32 case. The
performance gap between the full analog and digital beamforming
is less than that of LM = 32 antenna case. In fact, there is an
approximately 5 dB difference for N = 20 users.

In Fig. 4, the number of users is kept constant atN = 12 and the
effect of the increase in the number of phase shifters per RF chain,
M , is presented. As M increases, transmitted power decreases for
different number of RF chains, L. As it is seen from this figure,
hybrid beamformer is an effective structure to decrease the number
of RF chains. For example, L = 1 RF chain with M = 16 phase
shifters per RF chain, has a close performance to L = 4 RF chains
with M = 1 phase shifter per RF chain.

In Fig. 5, the proposed hybrid beamforming approach is com-
pared with one of the best performing antenna selection techniques
in the literature [4]. While this comparison is not completely fair
due to the differences in hardware, it gives a good idea about the
performance of the proposed method. There are LM = 32 anten-
nas and L RF chains are used. While antenna selection uses only
L antennas, hybrid beamforming employs all antennas with the help
of phase shifters following each RF chain. As it is seen from this
figure, hybrid beamforming results significant power saving with the
use of cost efficient and simple two bit phase shifters.
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Fig. 2. Transmitted power for different number of RF chains and
users for an array of LM = 32 antennas.

6. CONCLUSION
In this paper, a hybrid beamforming structure is proposed for single
group multicasting and the joint design of analog and digital beam-
formers is considered. The optimization problem is converted to a
quadratic-cost problem with linear constraints over a semidefinite
matrix. An alternating minimization algorithm is presented for the
solution of the resulting problem where semidefinite programming is

used at each iteration. The proposed method is efficient in terms of
both hardware complexity and the performance. Simulation results
show that it is a good low-cost alternative to full digital beamform-
ing.

4 8 12 16 20

−2

0

2

4

6

8

10

NUMBER OF USERS

T
R

A
N

S
M

IT
T

E
D

 P
O

W
E

R
 (

d
B

)

 

 

SDR Lower Bound, L=64, M=1

Proposed Method, L=64, M=1

Proposed Method, L=32, M=2

Proposed Method, L=16, M=4

Proposed Method, L=8, M=8

Proposed Method, L=4, M=16

Proposed Method, L=2, M=32

Proposed Method, L=1, M=64
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[15] I. Csiszár and G. Tusnády “Information geometry and alter-
nating minimization procedures, ” Statistics and Decisions,
Suppl. Issue 1, pp. 205-237, July 1984.

[16] C. L. Byrne, “Alternating minimization as sequential uncon-
strained minimization: a survey, ” Journal of Optimization
Theory and Applications, vol. 156, no. 3, pp. 554-566, March
2013.

[17] E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of
service and max-min fair transmit beamforming to multiple
co-channel multicast groups,” IEEE Trans. Signal Processing,
vol. 56, pp. 1268-1279, Mar. 2008.

[18] M. Grant and S. Boyd. CVX : Matlab software for dis-
ciplined convex programming (web page and software).
http://cvxr.com/cvx, February 2014.

3275


