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ABSTRACT

For the purpose of dealing with closely-spaced and spectrally-
overlapped sources, a direction-of-arrival (DOA) estimation
algorithm based on time-frequency (TF) sparse representation
is proposed. Firstly a short-time Fourier transform (STFT)
based single-source TF points selection method is briefly
introduced. On this basis, we extract the STFT values corre-
sponding to the single-source TF points of each source from
the STFT values of array outputs to construct received data
matrix. We then enforce sparsity by imposing the `1 norm
based penalties on TF sparse signal representation and solve
the optimization problem. Finally, the DOA of each source
can be estimated from over-complete basis according to the
peak of TF sparse signal vector. Simulation results demon-
strate the advantages of the proposed algorithm in terms
of dealing with closely-spaced and spectrally-overlapped
sources and the flexibility in underdetermined cases.1

Index Terms— Closely-spaced and spectrally-overlapped
sources, TF sparse representation, single-source TF points,
DOA estimation

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is a very important
branch in array signal processing with many applications,
involving radar, sonar, communication and biomedicine [1].
With the extensive research of DOA estimation methods, the
resolution and precision have greatly improved. Subspace-
based method MUSIC [1, 2], is considered effective to offer
high-resolution on DOA estimation by using the orthogonal-
ity of the signal and noise subspaces obtained from the eigen-
decomposition of correlation matrix. Nevertheless, MUSIC
suffers from the ability to solve closely-spaced sources in
low signal-to-noise ratio (SNR). Another kind of algorithms
based on sparse signal representation [3, 4, 5, 6], can better
deal with closely-spaced sources with a sharp spatial spec-
trum by introducing an over-complete basis, while it still
cannot achieve desirable performance when the sources get
very close. It is worth noting that, for all the above methods,
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the number of array sensors must be larger than the number
of estimated sources.

In order to ease the above limitations, time-frequency
(TF) analysis [7, 8] is introduced in the array signal process-
ing [9, 10]. In [11], Wiger-Ville distribution of array output is
firstly discovered to have a similar structure to the correlation
matrix used in subspace-based methods, subsequently, spatial
time-frequency distribution (STFD) is proposed. With STFDs
[12, 13], TF-MUSIC with true instantaneous frequency (IF)
information [14] is generated in [15] through substituting
STFD matrices for correlation matrices. TF-MUSIC has
greatly improved robustness to noise due to the property of
localizing the signal around its IF while spreading the noise
over the entire TF domain. More importantly, with the ability
to separately construct STFD matrix for each source, TF-
MUSIC can well resolve closely-spaced sources. Further,
the use of less number of sensors is allowed in underdeter-
mined cases. However, due to the inevitable cross-source
TF points [16] in STFD matrices, TF-MUSIC has the limi-
tation to resolve sources whose spectral contents are highly
overlapped in TF domain. In addition, the required accurate
IF information of each source which is assumed known in
most of previous studies, may be unavailable in practice and
hard to estimate. It can be seen from [10, 17, 18, 19], auto-
source TF points are significant for precise DOA estimation,
eliminating cross interference terms is the key to obtain an
improved DOA estimation. Hence, a selection of appropriate
auto-source TF points is crucial.

The main focus of this paper is that a TF sparse represen-
tation based DOA estimation algorithm aiming at solving
closely-spaced and spectrally-overlapped sources is pro-
posed. As a support of the proposed algorithm, a single-
source TF points selection based on short-time Fourier trans-
form (STFT) [20] is firstly introduced to eliminate the effects
of cross-source and noise TF points. In the proposed algo-
rithm, we separately consider the STFT values corresponding
to single-source TF points of each source as received data
matrix in TF domain, and formulate this problem in a sparse
representation framework. For the sake of reducing compu-
tational complexity, we use the singular value decomposition
(SVD) of the received data matrix. Here, `1 norm is adopted
to enforce sparsity of the TF sparse representation and this
leads to an optimization problem, which can be solved in a
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second-order cone (SOC) programming framework [4]. Once
the TF sparse signal vector is computed, the DOA of each
source can be estimated from over-complete basis. Simula-
tion results have shown the efficiency and accuracy of the
proposed algorithm.

2. DATA MODEL

Consider K narrowband far-field frequency-modulated (FM)
sources, impinging on an uniform linear array with M omni-
directional sensors from directions θ1, θ2, · · · , θK . The array
output is represented as:

x(t) = A(θ)d(t) + n(t), (1)

M × 1 array output vector x(t) = [x1(t), · · · , xM (t)]T ,
signal vector d(t) is:

d(t) = [d1(t), d2(t), · · · , dK(t)]T

= [D1e
jψ1(t), D2e

jψ2(t), · · · , DKe
jψK(t)]T , (2)

where Di and ψi(t) respectively denote constant amplitude
and time-varying phase of the ith source. For one snapshot,
di(t) has an IF fi(t) = (1/2π)(dψi(t)/dt). The M ×K ma-
trix A(θ) = [a1, · · · ,aK ] is the array manifold, where each
element ai, i ∈ 1, · · · ,K is the steering vector corresponding
to θi. n(t) denotes the additive Gaussian noise vector with
zero mean. [.]T denotes the transpose operator, [.]H denotes
the conjugate transpose operator.

3. SINGLE-SOURCE TF POINTS SELECTION

For accurate DOA estimation of one source, the TF points
only associated to this source are considered as the ideal
TF points. However, selecting appropriate single-source TF
points is a very intractable problem due to a large number of
cross terms. STFT is a valuable tool for TF analysis because it
is free of cross terms and easy to implement. Herein a single-
source TF points selection method based on STFT is briefly
introduced, which abides by the following assumptions: In
real world scenarios, different sources may be closely spaced
and highly overlapped in TF domain; The number of sources
in each auto-source TF point is no more than two; For each
source, there always exists TF points only associated to it.

Assuming Wdi(t, f) is the STFT of the ith source, the
STFT of the array output x(t) without noise is expressed as:

Wx(t, f) = A(θ)Wd(t, f)

= [a1, · · · ,aK ]

 Wd1(t, f)
...

WdK (t, f)

 . (3)

The main steps of the single-source TF points selection
method are outlined as follows:

1. Select a set of high-energy TF points ∈ Φ:

‖Wx(t, f)‖
maxv ‖Wx(t, v)‖

> ζ0. (4)

Then compute the spatial vectors of the TF points ∈ Φ:

ιιι(t, f) =


Wx1 (t,f)

‖Wx(t,f)‖
...

WxM
(t,f)

‖Wx(t,f)‖

 .‖Wx1(t, f)‖
Wx1

(t, f)
. (5)

2. Apply k-means clustering method to classify the spatial
vectors, and obtain K0 (K0 > K) direction vectors:

ι̂̂ι̂ιk =
1

NΥk

∑
(t,f)∈Υk

ιιι(t, f), k = 1, · · · , K0. (6)

Υk denotes the TF points set of the kth cluster. NΥk

is the number of TF points in set Υk. Matrix A0 =
[̂ι̂ι̂ι1 ι̂̂ι̂ι2 · · · ι̂̂ι̂ιK0

] is formed with the direction vectors .

3. Based on A0, minimize the following subspace projec-
tion to determine the optimal an1

, an2
, which are the

steering vectors of two most possible sources in each
point ∈ Φ.

{an1
,an2
} = arg min

an1 ,an2

QWx(t, f), (t, f) ∈ Φ,

(7)
where Q = I − Ã2(ÃH

2 Ã2)−1ÃH
2 represents the or-

thogonal projection matrix into the noise subspace of
Ã2 [21]. I is the identity matrix. Ã2 = [am1 ,am2 ],
am1 ,am2 are two random columns of matrix A0.

4. Extract the single-source TF points ∈ Φ∗ from Φ by
setting appropriate thresholds:{

max{|W1|,|W2|}
min{|W1|,|W2|} > γ0

min{|W1|, |W2|} < η0

, (8)

where W1 and W2 are two STFT values of each TF
point in set Φ.

5. Apply k-means clustering method on set Φ∗ to group
the single-source TF points into K clusters {Φi, i =
1, · · · , K}.

4. TIME-FREQUENCY SPARSE REPRESENTATION

4.1. Sparse signal representation based on `1 norm

Assuming θ1, θ2, · · · , θNθ is a sampling grid of all source lo-
cations of interest, and Nθ is the number of potential DOAs,
which is much larger than the number of sensors M . Over-
complete basis A [4] is introduced to represent steering vec-
tors corresponding to the Nθ potential DOAs. A has the fol-
lowing form:

A = [a(θ1), a(θ2), · · · , a(θNθ )]. (9)

3267



Different from A(θ) in (1), the structure of the over-
complete basis A is known and does not rely on the actual
sources. The goal of sparse signal representation is to find a
Nθ×1 sparse signal vector s, satisfying the equation y = As,
y is the observation vector. In practice, noise is inevitable,
therefore, a sparse signal representation with additive Gaus-
sian noise is written as:

y = As + n. (10)

In order to enforce sparsity of the representation, `1 norm
penalization is applied on the sparse signal vector s. The ap-
propriate objective function of the problem is:

min‖y −As‖22 + α‖s‖1. (11)

The above optimization problem can be solved in a SOC pro-
gramming framework. While the `2-penalization forces the
residual y −As to be small, parameter α controls the trade-
off between the sparsity and the residual norm.

4.2. The TF sparse DOA estimation algorithm

Inspired by the sparse signal representation, herein we pro-
pose a new algorithm for the DOA estimation of closely-
spaced and spectrally-overlapped sources with the afore-
mentioned single-source TF points selection method. By
separately dealing with the STFT values corresponding to
single-source TF points of each source, the proposed algo-
rithm offers the flexibility in underdetermined cases.

Firstly, the STFT values of each sensor output are taken
to construct the TF matrix Dy:

Dy(m, t, f) = Sym(t, f), m = 1, · · · ,M, (12)

where Sym(t, f) denotes the STFT values of each sensor out-
put, Dy is a three-dimensional tensor which contains all the
STFT values of M sensors.

Based on the single-source TF points selection, each
single-source TF point belonging to set Φi, i ∈ 1, · · · ,K
has a corresponding column coordinate in Φ∗. We define an
index vector for each source:

qi = [qi1 , · · · , qiNi ], i = 1, · · · ,K, (13)

the element qij , j ∈ 1, · · · , Ni denotes the corresponding col-
umn coordinate in Φ∗ of the jth single-source TF point ∈ Φi.
Ni is the number of TF points in set Φi. According to qi,
the STFT values corresponding to the TF points in set Φi are
selected from matrix Dy , to construct a TF received data ma-
trix Ytf . For each source, the process can be expressed in a
mathematical way:

Ytf (m) = Dy{m}(qi), m = 1, · · · ,M. (14)

Hence, the TF sparse signal representation of the M × Ni
matrix Ytf with over-complete basis A is:

Ytf = AStf + Ntf . (15)

To reduce computational complexity, we use the SVD of
matrix Ytf , and keep one dimensional subspace

Ytf = UΣV′, (16)

the reduced matrix is:

YSV D = YtfVDK . (17)

DK = [IK 0K×(Ni−K)], IK is K × K identity matrix.
Here K is set to 1 (considering separately dealing with each
source). Let SSV D = StfVDK , we can rewrite (15) as:

YSV D = ASSV D + NSV D. (18)

Then, the objective function with `1 norm based penalties
is:

min‖YSV D −ASSV D‖2f + α‖s(`2)
SV D‖1, (19)

where Frobenius norm ‖YSV D−ASSV D‖2f = ‖vec(YSV D−
ASSV D)‖22, s(`2)

SV D is aNθ×1 TF sparse signal vector, and the
ith element of s(`2)

SV D is defined as s(`2)
iSVD

=
√

(siSVD (1))2.
The objective function in (19) has another constrained

form as follows:

min‖s(`2)
SV D‖1 subject to ‖YSV D −ASSV D‖2f ≤ %, (20)

which can also be efficiently solved in the SOC framework.
Parameter % is related with α, denotes the noise level we al-
lowed. Obviously, selecting the appropriate % is much easier
than α. s

(`2)
SV D reflects the sparsity of the spatial spectrum.

According to the peak of s(`2)
SV D, the DOA of each source can

be estimated from over-complete basis A.

5. SIMULATION RESULTS

In this section, two experiments are performed to demonstrate
the advantages of the proposed algorithm. The involved
FM sources that are spectrally-overlapped in TF domain,
are monopulse, linear FM, sinusoidal FM and frequency-
shift-keying, respectively. We consider the sensors are half-
wavelength spaced, all the sources have the same power.

In the first experiment, we compare the performance of
the proposed algorithm with MUSIC [1], sparse signal rep-
resentation based method `1-SVD [4], and true IF informa-
tion based TF-MUSIC [15] in resolving closely-spaced and
spectrally-overlapped sources. Fig. 1(a) gives the DOA esti-
mation results of different algorithms with directions −10o,
−5o, 0o, 5o at SNR = 5 dB. It is clear that MUSIC and `1-
SVD are unable to provide accurate estimations for 5o spaced
sources, TF-MUSIC and the proposed algorithm can both
achieve super resolution. Moreover, the proposed algorithm
based on the selected single-source TF points outperforms
the TF-MUSIC by mitigating the cross interference.

For comparison, we repeat the experiment with a set of
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(a) SNR: 5 dB, sources spaced: 5o
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(b) SNR: 15 dB, sources spaced: 1o
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Fig. 1. Estimated results of closely-spaced and spectrally-
overlapped sources (M = 10, K = 4).

closer separation directions −2o, −1o, 0o, 1o in the pres-
ence of SNR = 15 dB. The estimated results in Fig. 1(b)
show that the proposed algorithm still provides more accu-
rate precision than the other methods, while MUSIC and
`1-SVD cannot resolve the closely-spaced sources even at
a high SNR level. Lastly, we compare the capability of the
proposed algorithm and TF-MUSIC at different SNR levels.
For illustrative purposes, the root-mean-square error (RMSE)
of the two methods are shown in Fig. 1(c). It can be seen
that, although TF-MUSIC based on known IF information
outperforms the proposed algorithm at low SNR conditions,
in practice, the required accurate IF information is unknown
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Fig. 2. Estimated results in underdetermined case (M = 3, K
= 4).

and it is a intractable problem to estimate the IF information
for the spectrally-overlapped sources at low SNR levels.

The second experiment demonstrates the flexibility of
the proposed algorithm in an underdetermined case. We set
SNR = 20 dB, the DOAs are −10o, −5o, 0o, 5o. The un-
derdetermined case that the number of sensors M is smaller
than the number of sources K is examined in Fig. 2. It
is evident that MUSIC cannot work in the underdetermined
case, whereas the other two methods are able to relax the
well-known M > K restriction with the ability to deal with
sources separately. Noting that, with true IFs, TF-MUSIC
suffers worse DOA estimation in underdetermined cases.

6. RELATION TO PRIOR WORK

There are different approaches for DOA estimation. The
methods in [1] and [4] have no ability to resolve the closely-
spaced sources and lack the flexibility in underdetermined
cases. Another method in [15, 17] is limited to resolve the
sources whose spectral contents are highly overlapped in TF
domain. However, all the above shortcomings can be well
overcome with the proposed algorithm, which is the novelty
of this paper. The proposed algorithm shows the superior-
ity of dealing with closely-spaced and spectrally-overlapped
sources by applying the sparse signal representation on the
STFT values corresponding to the single-source TF points. In
addition, this algorithm is feasible in underdetermined cases.

7. CONCLUSION

In this paper, we propose a time-frequency sparse represen-
tation based algorithm for DOA estimation of closely-spaced
and spectrally-overlapped sources. Based on the introduced
single-source TF points selection method, the STFT values
corresponding to the TF points where only one source ex-
ists are adopted in a sparse signal representation framework.
From the simulation results, the superior performance of the
proposed algorithm is verified.
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