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ABSTRACT

A new method for solving adaptive Boolean compressive sensing is
proposed. By greedy maximization of an expected information gain,
a conventional method controls the pool-size for adaptive Boolean
compressive sensing. However, the conventional greedy method has
the drawback that it has no guarantee of convergence to the optimal
strategy. To solve the problem, based on the multi-armed bandit,
the proposed method controls the pool-size adaptively. The infor-
mation gain of the conventional greedy method is rewritten as the
reward of the multi-armed bandit, and the multi-armed bandit is in-
troduced into adaptive Boolean compressive sensing. Experimental
results indicate that the correct rate of exact recovery of the proposed
method converges to 1 fast without prior knowledge about the num-
ber of defective items and that the proposed method outperforms the
conventional greedy method in the case that the number of defective
items is large.

Index Terms— adaptive group-testing, Boolean compressive
sensing, information gain, multi-armed bandit

1. INTRODUCTION

Group-testing is a well-known approach for discovering a sparse
subset of defective items in a large set of items by using a small
number of tests. In group-testing, each test consists of three pro-
cessing steps: (1) selecting items for a pool on the basis of a certain
method, (2) mixing the selected items into the pool, and (3) observ-
ing a single Boolean result by testing the pool. When the proportion
of defective items is small, a small number of the tests on the mixed
pool are sufficient to detect the defective items; that is, all the items
need not be tested directly. Group-testing dates back to the work of
Dorfman [1] in 1943, during the Second World War. Dorfman devel-
oped this approach in order to test blood for detecting sick soldiers.
Nowadays, it is commonly known that group-testing has a lot of ap-
plications such as blood screening, deoxyribonucleic acid screening,
and anomaly detection in computer networks [2].

Traditionally, group-testing has been regarded as a combinato-
rial problem. As for this problem, many researches about the upper
and lower bounds on the number of tests required to find all the de-
fective items have been done. A set of information-theoretic bounds
for group-testing with random mixing was established by Malyu-
tov [3, 4], Atia and Saligrama [5], Sejdinovic and Johnson [6], and
Aldridge et al. [7]. In addition, several tractable approximation al-
gorithms, such as one based on belief propagation [6] and one based
on matching pursuit [8], have been proposed.

In recent years, group-testing has drawn interest from the active
research area of compressive sensing. Compressive sensing solves a
kind of underdetermined linear equation, namely, y = Ax, where x
is an unknown high-dimensional vector to be estimated, A is a given

mixing matrix, and y is a given low-dimensional observed vector.
The problem with compressive sensing is similar to that with group-
testing from the viewpoint that both of them are underdetermined
problems such that an unknown high-dimensional vector is decoded
from an observed low-dimensional vector. However, while compres-
sive sensing is defined in a real vector space, group-testing is defined
in a Boolean vector space. To improve the performance of group-
testing by using compressive sensing, Malioutov and Malyutov [9]
proposed a method for converting group-testing into compressive
sensing through linear-programming relaxation. As for this con-
version method, ℓ1 minimization imposes the sparsity constraint
to the solution and solves the uncertainty of the underdetermined
problem. It thus outperforms other methods (i.e., the method based
on belief propagation [6], the method based on matching pursuit [8],
etc.). However, the method based on linear-programming relaxation
is defined in non-adaptive group-testing, which cannot choose the
pool adaptively based on observation data. In particular, the optimal
size of the pool depends on the number of defective items, and the
number of defective items is unknown; therefore, in the case that
Malioutov’s method is applied, a larger number of tests are required
when the pool-size is not optimal. To solve the problem that the
number of positive elements is unknown in advance, approaches
changing the mixing matrix adaptively, called adaptive Boolean
compressive sensing, have been proposed by Kawaguchi et al. [10]
and Kawasaki et al. [11]. Kawaguchi’s conventional method [10]
is based on greedy maximization of an expected information gain.
However, the conventional greedy method has the drawback that it
has no guarantee of convergence to the optimal strategy. Kawasaki’s
method improves the reconstruction performance by solution space
reduction [11]. However, Kawasaki’s method assumes that test re-
sults are not deteriorated by noise [11], and Kawasaki’s method can
not be applied for noisy cases.

To solve the problem that Kawaguchi’s conventional greedy
method [10] has no guarantee of convergence to the optimal strat-
egy, a method for adaptive Boolean compressive sensing is proposed
here. Based on the multi-armed bandit, the proposed method con-
trols the pool-size adaptively. The information gain of the conven-
tional greedy method [10] is rewritten as the reward of the multi-
armed bandit, and the multi-armed bandit is introduced into adaptive
Boolean compressive sensing. Experimental results indicate that the
correct rate of exact recovery of the proposed method converges to
1 fast without prior knowledge about the number of defective items
and that the proposed method outperforms the non-adaptive method
[9] and the conventional greedy method [10] in the case that the
number of defective items is large.
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2. PROBLEM STATEMENT

To state the problem, first, the following notation is fixed. N is the
number of items, of which a subset of size K is defective. Defec-
tive items are called “positive”, and non-defective items are called
“negative”. xn = 1 indicates that the n-th item is positive, and
xn = 0 indicates that the n-th item is negative. For convenience,
x = [x1, x2, · · · , xN ]T is written. T tests, where T < N , are
then performed. As explained above, in each test, some items are
selected from all the items, and they are mixed into the same pool.
This selection is defined by a mixing matrix, A, which is a T × N
binary matrix. The element of the t-th row and the n-th column of
A is given as atn, where at,n = 1 indicates that the n-th item is
mixed into the pool of the t-th test, and at,n = 0 indicates that the
n-th item is not mixed into the pool of the t-th test. The observed
signal of each test, t, is a single Boolean value, yt ∈ {0, 1}. yt is
obtained by taking the Boolean sum of {xn|atn = 1}. For conve-
nience, y = [y1, y2, · · · , yT ]T is written. The vector notation

y = Ax (1)

is used in the following. The problem of group-testing is to esti-
mate unknown vector x from given A and y. In addition, the noise
of the observation is considered. The noise includes both the false
positive and the false negative. The former represents the case that
yt = 1 even when the Boolean sum of {xn|atn = 1} is 0. The lat-
ter represents the case that yt = 0 even when the Boolean sum of
{xn|atn = 1} is 1. This observation with noise is represented by

y = Ax⊗ v, (2)

where v is the Boolean vector of errors, and ⊗ means the XOR op-
eration.

A number of works have studied the design of A [2]. For ex-
ample, K-separating and K-disjunct are well-known properties of
A. When these properties hold, x can be recovered exactly. How-
ever, such design is often unsuitable for practical situations because
it assumes that the exact number of the positive items (K) is known
before group-testing. Moreover, if all T tests cannot be carried out,
the performance of the method will not be guaranteed [7]. There-
fore, in many works, A is simply designed by the Bernoulli random
design, where each element of A is generated independently at ran-
dom with a probability p corresponding with the size of the pool g.
That is, atn is 1 with probability p, and atn is 0 with probability
1− p. Bernoulli random design is also used in this study.

One of the problems of non-adaptive group-testing is that, al-
though the number of positive items K is unknown, the optimal
pool-size g largely depends on K. To solve this problem, the present
study thus focuses on adaptive group-testing. In adaptive group-
testing, the mixing vector of the next test after each observation is
determined according to A and y. In the present study, because
Bernoulli random design is used, g is controlled according to A and
y, and aT+1,n is determined randomly as follows:

aT+1,n
i.i.d∼ Bernoulli(pT+1) s.t. g = FT (A,y) , (3)

where FT is a function to determine the next Bernoulli probability,
pT+1, after the T -th test. In Section 4, a new FT is proposed.

3. BOOLEAN COMPRESSIVE SENSING FOR
GROUP-TESTING

Malioutov and Malyutov [9] proposed a conversion of group-testing
into compressive sensing through a linear-programming relaxation.

This method is the basis of our method, which is explained in this
section.

Equation (1) is not a linear equation in a real vector space but
a Boolean equation. However, it is shown in [9] that (1) can be
replaced with a closely related linear formulation: 1 ≤ AIx, and
0 = AIx, where I = {t|yt = 1} is the set of positive test results,
and J = {t|yt = 0} is the set of negative test results. A linear-
programming formulation is therefore given as

min
x,ξ

{∑
n

xn + α
∑
t

ξt

}
subject to 0 ≤ x ≤ 1, 0 ≤ ξI ≤ 1, 0 ≤ ξJ ,

AIx+ ξI ≥ 1, AJx = ξJ , (4)

where ξ = [ξ1, · · · , ξT ] is the vector composed of the slack vari-
ables for preventing degradation in the case that the test-results y
include noise, and α is the regularization parameter that balances
the noise tolerance and the sparsity of the solution.

4. PROPOSED METHOD

The proposed method for controlling the pool-size g in adaptive
Boolean compressive sensing is described as follows.

Here, similarly to the conventional control [10], expected infor-
mation gain of the next (T + 1)-th test is introduced as

IT+1(g) = γINEG + (1− γ)IPOS, (5)

where IT+1(g) is the expected information gain corresponding to
the pool-size g, namely, the number of the non-zero elements of
aT+1, γ is the probability that the result of the (T+1)-th test is neg-
ative, INEG is the information gain of the negative test, and IPOS
is the information gain of the positive test. The negative test means
that all the items of the pool are negative, so γ is given by

γ =

(
N − |x|0

g

)
(

N
g

) . (6)

The negative test gives the information that all the items of the pool
are negative, so INEG is the sum of the current entropy of the g
items of the pool; therefore, INEG is given by

INEG = g {−r log r − (1− r) log(1− r)} , (7)

where r = |x|0 /N is the probability that each item is positive. The
positive test gives the information that there is at least one positive
item in the pool; therefore, IPOS is given as

IPOS = {−rg log rg − (1− rg) log(1− rg)} . (8)

The temporary estimate of x, x̂, is obtained by using T tests, and
the conventional control [10] optimizes g by maximizing IT+1(g) of
(5) based on |x̂|0. However, x̂ may include an estimation error be-
cause x̂ is only a temporary result based on a small number of tests.
The greedy method for controlling g is degraded by the estimation
error, so the greedy method has no guarantee of convergence to the
optimal strategy. To solve the problem, the multi-armed bandit ap-
proach is introduced into the greedy method here. The multi-armed
bandit was introduced by Robbins [12]. The multi-armed bandit is a
method for solving the trade-off between to gain new knowledge by
exploring an environment and to exploit a current reliable knowledge
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[13]. There are several approaches for the multi-armed bandit. One
of the approaches that have a guarantee of convergence to the op-
timal strategy is Upper-Confidence-Bounds (UCB) algorithm [14].
Here, the multi-armed bandit problem is defined by a random vari-
able R(t) ∈ [0, 1] for t ≥ 1, where R(t) is called a ”reward” and
is yielded from the i-th machine selected at each t-th play. R(t) at
each play is independent and identically distributed following an un-
known expected value µi. UCB algorithm selects the next machine
to play based on the sequence of past plays and obtained rewards. At
(T + 1)-th play, UCB algorithm selects the i-th machine such that
the following function fi(T + 1) is maximized:

fi(T + 1) = µ̄i(T + 1) + c

√
2 log T

Ti
, (9)

where µ̄i(T + 1) is the average of R(t) obtained from the i-th ma-
chine, and Ti is the number of times that the i-th machine has been
selected, and c is a constant positive value. Then the regret after T -th
play is defined by

E

[
µ∗T −

T∑
t

R(t)

]
, (10)

where µ∗ = maxi µi. Auer et al. [14] show that the regret at the
T -th play is bounded by:

8

 ∑
i:µi<µ∗

log T

∆i

+

(
1 +

π2

3

)∑
i

∆i, (11)

where ∆i = µ∗ − µi. Here, to introduce UCB algorithm into the
conventional pool-size control method, the reward R(t) is replaced
by the information gain, and the index of machine i is interpreted as
the pool-size g. In addition, to accelerate the convergence, µ̄i(T+1)
is replaced by the predicted information gain µ̂g(T + 1) that can be
calculated by

µ̂g(T + 1) =
∑
K

p(|x|0 = K | |x̂|0)
IT+1(g)

maxg IT+1(g)
, (12)

where p(|x|0 = K | |x̂|0) is the following probability distribution
function of the binomial distribution:

p
(
|x|0 = K | |x̂|0

)
=

(
N
|x̂|0

)[
K

N

]|x̂|
0
[
1− K

N

]N−|x̂|
0

. (13)

Therefore, the proposed method selects the pool-size g such that the
following function fg(T + 1) is maximized:

fg(T + 1) = µ̂g(T + 1) + c

√
2 log T

Ti
. (14)

The UCB-based proposed method also has the guarantee of conver-
gence to the optimal strategy.

5. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method by simula-
tion. We computed the averaged probability of the correct estima-
tion over 100 trials as a function of T , for N = 150. The N items
were generated independently for each trial. In this experiment, we
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Fig. 1. Probability of exact recovery in the noiseless case as a func-
tion of the number of tests T . NON-ADAPT means the non-adaptive
method [9], PROPOSED means the proposed method, and GREEDY
means the conventional greedy maximization of (5) [10]. N = 150,
K = 2.

considered the case of x̂ = x as correct. We compared the non-
adaptive method [9], the conventional greedy maximization of (5)
[10], and the proposed method. In order to evaluate the robustness
against the difference of the number of the positive items K, we
conducted the experiment in the case of K = 2 and that of K = 6.
Also, we calculated the optimal p for K = 2, i.e. p = 0.31, that
for K = 4, i.e. p = 0.2, and that for K = 6, i.e. p = 0.14 by
simulation. In the non-adaptive method, these fixed optimal p was
used. In the conventional greedy method and the proposed method,
the adaptively-determined pT was used.

First, we computed the performance in the case of no noise. Fig-
ure 1 shows the case of K = 2, and Fig. 2 shows the case of K = 6.
In both cases, the convergence of the proposed method was faster
than that of the worst cases of the non-adaptive method, and the cor-
rect rate after convergence was 1. The convergence speed of the
proposed method was on the same level with the optimal pool-size.
Also, as Fig. 2 shows, in the case that K was 6, the convergence of
the proposed method was faster than that of the conventional greedy
method. The results in Fig. 2 indicate that the exploration of the
multi-armed bandit works well in the case that K is large. These re-
sults indicate that the control of the pool-size of the proposed method
is effective.

Second, we computed the performance in the noisy case. We
added noise with i.i.d 5% probability of flipping each bit of y. Fig-
ure 3 shows the case of K = 2, and Fig. 4 shows the case of
K = 6. Also, in these results, the convergence of the proposed
method was faster than that of the worst cases of the non-adaptive
method, and the correct rate after convergence was 1. The conver-
gence speed of the proposed method was on the same level with the
optimal pool-size. Also, as Fig. 4 shows, in the case that K was 6,
the convergence of the proposed method was faster than that of the
conventional greedy method. The results in Fig. 4 indicate that the
exploration of the multi-armed bandit works well in the case that K
is large under noisy conditions. These results indicate that the con-
trol of the pool-size of the proposed method is effective even under
noisy conditions.
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Fig. 2. Probability of exact recovery in the noiseless case as a func-
tion of the number of tests T . NON-ADAPT means the non-adaptive
method [9], PROPOSED means the proposed method, and GREEDY
means the conventional greedy maximization of (5) [10]. N = 150,
K = 6.
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Fig. 3. Probability of exact recovery in the noisy case as a function
of the number of tests T . NON-ADAPT means the non-adaptive
method [9], PROPOSED means the proposed method, and GREEDY
means the conventional greedy maximization of (5) [10]. N = 150,
K = 2.
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Fig. 4. Probability of exact recovery in the noisy case as a function
of the number of tests T . NON-ADAPT means the non-adaptive
method [9], PROPOSED means the proposed method, and GREEDY
means the conventional greedy maximization of (5) [10]. N = 150,
K = 6.

6. CONCLUSION

A new method for solving adaptive Boolean compressive sensing
was proposed. To achieve the guarantee of convergence to the opti-
mal strategy, based on the multi-armed bandit, the proposed method
controls the pool-size adaptively. The information gain of the con-
ventional greedy method was rewritten as the reward of the multi-
armed bandit, and the multi-armed bandit was introduced into adap-
tive Boolean compressive sensing. In an experimental evaluation of
the method, it was shown that the correct rate of exact recovery of
the proposed method converges to 1 fast without prior knowledge
about the number of defective items and that the proposed method
outperforms the non-adaptive method and the conventional greedy
method in the case that the number of defective items is large.
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