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ABSTRACT

This paper presents a new Bayesian model and associated algorithm
for depth and intensity profiling using full waveforms from time-
correlated single-photon counting (TCSPC) measurements when the
photon count in very low. The model represents each Lidar wave-
form as an unknown constant background level, which is combined
in the presence of a target, to a known impulse response weighted
by the target intensity and finally corrupted by Poisson noise. The
joint target detection and depth imaging problem is expressed as a
pixel-wise model selection problem which is solved using Bayesian
inference. A Reversible Jump Markov chain Monte Carlo algorithm
is proposed to compute the Bayesian estimates of interest. Finally,
the benefits of the methodology are demonstrated through a series of
experiments using real data.

Index Terms— Full waveform Lidar, Poisson statistics, Bayesian
estimation, Reversible Jump Markov Chain Monte Carlo, depth
imaging.

1. INTRODUCTION

Time-of-flight laser ranging (Lidar) systems can be used to recon-
struct 3-dimensional scenes in many applications, including auto-
motive [1, 2, 3, 4], environmental sciences [5, 6], architectural en-
gineering and defence [7, 8]. This challenging problem consists of
illuminating the scene with a train of laser pulses and analysing the
distribution of the photons received by the detector to infer the pres-
ence of objects as well as their range, and radiative properties (e.g.,
reflectivity, observation conditions,. . . ). Using optical scanning sys-
tems, a histogram of time delays between the emitted pulses and the
detected photon arrivals is usually recorded for each pixel, associ-
ated with a different region of the scene. In the presence of objects,
the recorded photon histograms are classically decomposed into a
series of peaks whose positions can be used to infer the distance of
the objects present in each region of the scene and whose amplitudes
provide information about the reflectance of the objects. In this pa-
per, we investigate the target detection problem which consists of
inferring the regions or pixels of the scene where objects are present.
Moreover, we propose an algorithm for applications where the flux
of detected photons is small and for which classical depth imaging
methods [9] usually provide unsatisfactory results in terms of range
and intensity estimation. In Lidar systems there is a trade-off be-
tween range, acquisition time and laser power levels. In this paper,
we examine the sparse photon regime which occurs at the extremes
of the trade-off, for example at very long ranges, and/or at very short
acquisition times (e.g., for applications where very fast imaging is
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required (dynamic scene and/or sensor)). In this work, we assume
that the targets in the scene of interest are composed of a single solid
surface in each pixel. As in [10, 11], we consider the potential pres-
ence of two kinds of detector events: the photons originating from
the illumination laser and scattered back from the target (if present);
and the background detector events originating from ambient light
and the ”dark” events resulting from detector noise. The proposed
method aims to estimate the respective contributions of the actual
target (if any) and the background in the photon timing histograms.
Following a classical Bayesian approach, as in [12, 13, 11], we ex-
press the target detection and identification problem as a pixel-wise
model selection and estimation problem. More precisely, two ob-
servation models, conditioned on the presence or absence of a target
(modelled by binary labels) are considered for each pixel. We then
assign prior distributions to each model unknown parameters to in-
clude available information within the estimation procedure. The
binary labels associated with the presence/absence of target are also
assigned prior distributions accounting for spatial correlations. The
classical Bayesian estimators associated with the resulting joint pos-
terior cannot be easily computed due to the complexity of the model,
in particular because the number of underlying parameters (number
of pixels containing a target) is unknown and potentially large. To
tackle this problem, a Reversible-Jump Markov chain Monte Carlo
(RJ-MCMC) [14, 15] method is used to generate samples accord-
ing to this posterior by allowing moves between different parameter
spaces. More precisely, we construct an efficient RJ-MCMC algo-
rithm that simultaneously infers the target presence and estimates the
background levels and the target (if present) distances and intensity.

The remainder of this paper is organized as follows. Section 2
recalls the statistical models used for depth imaging using time-of-
flight scanning sensors, based on TCSPC measurements. Section 3
presents the proposed hierarchical Bayesian model which accounts
for the inherent spatial correlations between pixels. Section 4 briefly
discusses the estimation of the model parameters including the de-
tection labels using simulation methods. Simulation results con-
ducted using an actual time-of-flight scanning sensor are presented
and discussed in Section 5. Finally, conclusions and potential future
work are reported in Section 6.

2. PROBLEM FORMULATION

We consider a set of Nrow × Ncol observed Lidar waveforms/pixels
yi,j = [yi,j,1, . . . , yi,j,T ]

T , (i, j) ∈ {1, . . . , Nrow} × {1, . . . , Ncol}
where T is the number of temporal (corresponding to range) bins. To
be precise, yi,j,t is the photon count within the tth bin of the pixel or
location (i, j). Let zi,j ∈ {0, 1} be a binary variable associated with
the presence (zi,j = 1) or absence (zi,j = 0) of target in the pixel
(i, j). Conditioned on a target presence/absence, yi,j,t is assumed to
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be drawn from one of the following Poisson distribution

yi,j,t|zi,j = 0,θ0
i,j ∼ P (bi,j) (1a)

yi,j,t|zi,j = 1,θ1
i,j ∼ P (ri,jg0 (t− ti,j) + bi,j) (1b)

where bi,j > 0 stands for the background and dark photon level
(constant in all bins of a given pixel), ti,j is the position of an ob-
ject (if present) at a given range from the sensor and ri,j its inten-
sity. Note that the parameters of the models M(i,j)

0 and M(i,j)
1

in (1a) and (1b) are denoted by θ0
i,j = bi,j ∈ R+ and θ1

i,j =

[ri,j , ti,j , bi,j ] ∈ R+×T×R+, respectively, with T = {1, . . . , T}.
Moreover, g0(·) > 0 in (1b) stands for the photon (instrumental) im-
pulse response, which is assumed to be known (it can be estimated
during the imaging system calibration)

The problem addressed in this paper consists of deciding, from
the observed data gathered in the Nrow ×Ncol × T array Y, whether
a target is present (M(i,j)

1 ) or not (M(i,j)
0 ) in each pixel and of es-

timating the position and intensity of the targets (if any) present in
the scene. Moreover, the background levels bi,j are also assumed
to be unknown and need to be estimated. This problem can be
seen as a pixel-wise model selection problem where the parame-
ter space associated with each model is different. Precisely, un-
der M(i,j)

0 (resp. M(i,j)
1 ), θ(0)

i,j ∈ Θ0 (resp. θ
(1)
i,j ∈ Θ1) where

Θ0 = R+ and Θ1 = R+ × T × Θ0. To simplify notations,
the unknown parameter vector for each pixel is noted θi,j in the
remainder of the paper when we do not specify whether it is in-
cluded in Θ0 or Θ1. Estimating θi,j is difficult using standard op-
timization methods since the dimensionality of the parameter vector
depends on the underlying model. However, this model selection
problem can be solved efficiently in a Bayesian framework by 1)
performing inference for each pixel in the parameter space parame-
ter space {{0} ×Θ0}

⋃
{{1} ×Θ1}, 2) incorporating relevant ad-

ditional prior belief (through prior distributions) and 3) using RJ-
MCMC methods adapted for problems whose finite dimensionality
in unknown.

The next section presents the proposed Bayesian model and as-
sociated RJ-MCMC sampling strategy enabling cooperative target
detection for depth imaging using single-photon data.

3. PROPOSED BAYESIAN MODEL

3.1. Parameter prior distributions

It has been shown in [11] that considering gamma priors for the
background levels (under the two observation models) simplifies the
sampling procedure by exploiting the likelihood and priors conju-
gacy. Moreover, due to the spatial organization of images, we expect
the values of bi,j to vary smoothly from one pixel to another. In or-
der to model this behaviour, we specify the background levels prior
such that the resulting prior for the background matrix B such that
[B]i,j = bi,j is a hidden gamma-MRF (GMRF) [16]. More pre-
cisely, we introduce an (Nrow + 1) × (Ncol + 1) auxiliary matrix Γ
with elements γi,j ∈ R+ and define a bipartite conditional indepen-
dence graph between B and Γ such that each bi,j is connected to
four neighbour elements of Γ and vice-versa. We specify a GMRF
prior for B,Γ [16], and obtain the following joint prior for B,Γ

f(B,Γ|ν) =
∏

((i,j),(i′,j′))∈E exp

(
−νbi,j
4γi′,j′

)

×

 1

G(ν)

∏
(i,j)∈VB

b
(ν−1)
i,j

×
 ∏

(i′,j′)∈VΓ

(γi′,j′)
−(ν+1)

 (2)

where VΓ = {1, . . . , Nrow + 1} × {1, . . . , Ncol + 1}, VB =
{1, . . . , Nrow} × {1, . . . , Ncol}, and the edge set E consists of
pairs ((i, j), (i′, j′)) representing the connection between bi,j and

γi′,j′ . It can be seen from (2) that bi,j |Γ, ν ∼ G
(
ν,
εi,j(Γ)

ν

)
and

γi,j |B, ν ∼ IG (ν, νξi,j(B)) (3)

where εi,j(Γ) = 4
(
γ−1
i,j + γ−1

i−1,j + γ−1
i,j−1 + γ−1

i−1,j−1

)−1 and
ξi,j(B) = (bi,j + bi+1,j + bi,j+1 + bi+1,j+1) /4. Notice that we
denote explicitly the dependence on the value of ν, which here acts a
regularization parameter that controls the amount of spatial smooth-
ness enforced by the GMRF. For brevity, in this paper ν is assumed
to be fixed but can be adjusted automatically during the inference
procedure as in [11].

To reflect the absence of prior knowledge about the target ranges
given zi,j = 1, we assign each possible target depth the following

uniform prior p(ti,j = t) =
1

T
, t ∈ T. Note however that this

prior can be adapted according to potential prior knowledge about
the expected target depth distribution.

Accounting for potential spatial dependencies for the target in-
tensities is more challenging than for the background levels as all
pixels do not necessarily contain targets. Thus, considering fixed
neighbourhood structures is not well adapted here. To reflect the
lack of prior knowledge about the intensities of the target to be de-
tected, we propose the following classical hierarchical model

ri,j |α, β ∼ G (α, β) , ∀(i, j) (4a)
α|α1, α2 ∼ G (α1, α2) (4b)
β|β1, β2 ∼ IG (β1, β2) (4c)

where (α1, α2) and (β1, β2) are fixed parameters set to (α1, α2) =
(1.1, 1) and (β1, β2) = (1, 1) to reflect the fact that the target in-
tensities have a high probability to be in (0, 1). Indeed, the photon
impulse response g0(·) > 0 estimated during the imaging system
calibration can be scaled appropriately using reference targets and
acquisition times. Note that although (4) does not account for pos-
sibly spatially correlated target intensities, this model translates the
prior belief that the potential target intensities share similar statistical
properties (through α and β).

Finally, in a similar fashion to the background levels, it is often
reasonable to expect the probability of a target to be present in a pixel
to be related to the presence of targets in the neighbouring pixels (at
least when considering targets larger than the spacing between pixels
as considered in Section 5). To encode this prior belief, we attach the
Nrow × Ncol detection label matrix Z ([Z]i,j = zi,j) the following
Ising model

f(Z|c) =
1

G(c)
exp [cφ(Z)] (5)

where φ(Z) =
∑
i,j

∑
(i′,j′)∈Vi,j δ (zi,j − zi′,j′), δ(·) denotes the

Kronecker delta function, and Vi,j is the set of neighbours of pixel
(i, j) (in this paper we consider an 8-neighbour structure). More-
over, c is an hyperparameter that controls the spatial granularity of
the Ising model and G(c) =

∑
Z∈(0;1)Nrow×Ncol exp [cφ(Z)]. In a

similar fashion to ν, c is assumed to be fixed here but can be ad-
justed automatically using [17].

3.2. Joint posterior distribution

We can now specify the joint posterior distribution for Z,Θ =
{θi,j}i,j ,Γ, α and β given the observed waveforms Y and the
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value of hyperparameters α1, α2, β1, β2, ν and c. Note that for clar-
ity the dependence of all distributions on the known fixed quantities
(α1, α2, β1, β2, ν, c) is omitted in the remainder of the paper. Using
Bayes theorem, the joint posterior distribution associated with the
proposed Bayesian model is given by
f(Z,Θ,Γ, α, β|Y) ∝

[∏
i,j f(yi,j |zi,j ,θi,j)f(θi,j |Z,Γ, α, β)

]
× f(Z)f(Γ)f(α)f(β). (6)

4. BAYESIAN INFERENCE

4.1. Bayesian estimators

The Bayesian model defined in Section 3 specifies the joint poste-
rior density for the unknown parameters Z,Θ,Γ, α and β given the
observed data Y and the parameters ν and c. In this section we de-
fine suitable Bayesian estimators to summarize this knowledge and
perform target detection. Here we consider the following coupled
Bayesian estimators that are particularly suitable for model selection
problems: the marginal maximum a posteriori (MMAP) estimator
for the target presence labels

zMMAP
i,j = argmax

zi,j∈{0,1}
f(zi,j |Y, ν̂, c), (7)

and, conditionally on the estimated labels, 1) the minimum mean
square error estimator of the background levels

bMMSE
i,j = E

[
bi,j |zi,j = ẑMMAP

i,j ,Y, ν̂, c
]
, (8)

and 2) for the pixels for which ẑMMAP
i,j = 1, the minimum mean

square error estimator of the target intensities and the marginal max-
imum a posteriori (MMAP) estimator of the target positions

rMMSE
i,j = E [ri,j |zi,j = 1,Y, ν̂, c] (9)

tMMAP
i,j = argmax

ti,j∈T
f(ti,j |zi,j = 1,Y, ν̂, c), (10)

Note that marginalising out the other unknowns (including α and β)
in (7), (8), (9) and (10) automatically takes into account their uncer-
tainty. Computing (7) to (10) is challenging because it requires hav-
ing access to the univariate marginal densities of zi,j and the joint
marginal densities of (among others) (bi,j , zi,j), which in turn re-
quire computing the posterior (6) and integrating it over a very high-
dimensional space. Fortunately, these estimators can be efficiently
approximated with arbitrarily large accuracy by Monte Carlo inte-
gration. This is why we propose to compute (7) to (10) by first using
an MCMC method to generate samples asymptotically distributed
according to (6), and subsequently using these samples to approxi-
mate the required marginal probabilities and expectations. Here we
propose an RJ-MCMC method to simulate samples from (6), as this
type of MCMC method is particularly suitable for models involv-
ing hidden Markov random fields and parameter spaces of varying
of dimensions [18, Chap. 10,11]. The output of this algorithm are
Markov chains of NMC samples distributed according to the poste-
rior distribution (6). The firstNbi samples of these chains correspond
to the so-called burn-in transient period and should be discarded (the
length of this period can be assessed visually from the chain plots or
by computing convergence tests). The remainingNMC−Nbi of each
chain are used to approximate the Bayesian estimators (7) to (10) as
in [19, 11].

4.2. RJ-MCMC algorithm

The remainder of this section provides details about the main steps
of the proposed method, summarised in Algo. 1.

ALGORITHM 1

Collaborative target detection

1: Fixed input parameters: Lidar impulse response g0(·),
(α1, α2, β2, β2), number of burn-in iterations Nbi, total number
of iterations NMC

2: Initialization (t = 0)

• Set Z(0),Θ(0),Γ(0), α(0), β(0), ν(0), c(0)

3: Iterations (1 ≤ t ≤ NMC)
4: for i = 1 : Nrow do
5: for j = 1 : Ncol do
6: Update (z

(t)
i,j ,θ

(t)
i,j ) using RJ-MCMC

7: end for
8: end for
9: Sample Γ(t) ∼ f(Γ|B(t), ν)

10: Sample α(t) ∼ f(α|Y,Z(t),Θ(t), β(t−1))

11: Sample β(t) ∼ f(β|Y,Z(t),Θ(t), α(t))
12: Set t = t+ 1.

At each iteration, the elements of Z and {θi,j}i,j are updated se-
quentially, pixel by pixel (line 6 in Algo. 1). Precisely, with a given
probability (0.5 here), for each pixel, θi,j is updated while staying
in the same parameter space (i.e., Θ0 or Θ1) and zi,j remains un-
changed. This can be achieved using standard Gibbs updates. Oth-
erwise (with probability 0.5), a move from the current model to the
other is proposed. The generated candidate is then accepted with
an appropriate probability ensuring that the resulting RJ-MCMC al-
gorithm admits the target posterior distribution as invariant distribu-
tion (see [20] for details). The remaining parameters are updated
using standard Gibbs and Metropolis-Hastings updates. Precisely,
due to the conjugacy between (4a) and (4c), it can be easily shown
that f(β|Y,Z,Θ, α) = f(β|Z,Θ, α) is an inverse-gamma distri-
bution which is easy to sample from. Moreover, f(α|Z,Θ, β) is
strictly log-concave if α1 ≥ 1 (see [21]). Consequently, α can be
updated using standard Metropolis-Hastings updates or adaptive re-
jection sampling [22]. Here we used Metropolis-Hastings updates
using a Gaussian random walk whose variance is adjusted during
the early iterations of the sampler. Finally, by noting that Γ does not
appear in (1a) nor (1b), sampling from its conditional distribution
reduces to sampling from f(Γ|B, ν) in (3).

5. SIMULATION RESULTS

In this section, we assess the performance of the proposed method
to reconstruct a depth image of a life-sized polystyrene head located
at a stand-off distance of 325 meters from a TCSPC-based scan-
ning sensor. The transceiver system and data acquisition hardware
used for this work is broadly similar to that described in [23, 24, 25,
9, 11], which was previously developed at Heriot-Watt University.
The measurements have been performed outdoors, on the Edinburgh
Campus of Heriot-Watt University, under dry clear skies (around
noon). Additional information about the acquisition process can be
found in [20]. The acquisition time per pixel is 30ms (200 × 200
pixels). However, the data format of time-tagged events allows the
construction of photon timing histograms associated with shorter ac-
quisition times, after measurement, as the system records the time of
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arrival of each detected photon. Here, we evaluate our algorithm for
acquisition times of 30ms, 3ms, 1ms, and 300µs per pixel. The aver-
age number of detected photons per pixel ranges from 5.6 to 554.6
for exposures of 300µs to 30ms per pixels. The instrumental im-
pulse response g0(·) is estimated from preliminary experiments by
analysing the distribution of photons reflected from a standard com-
mercial Lambertian scatterer. The proposed Bayesian algorithm has
been applied with NMC = 1000 iterations, including Nbi = 300
burn-in iterations and the hyperparameters (ν, c) have been adjusted
from preliminary runs.

The proposed method is compared to the standard method used
for depth imaging [9] and which is divided into two steps. The
first step consists of estimating ti,j using cross-correlation between
log(g0(·)) and the photon histogram yi,j , which corresponds to
log-match filtering or maximum likelihood (ML) estimation under
background-free (bi,j = 0) assumption. Once the estimated target
distance or associated time-of-flight t̂i,j,corr has been computed, the
target intensity and the background level for each pixel are estimated
using ML estimation and the likelihood (1b). Note that this likeli-
hood is convex with respect to (ri,j , bi,j) with ri,j ≥ 0, bi,j ≥ 0 and
that the ML estimates of (ri,j , bi,j) (conditioned on t̂i,j,corr)can be
obtained efficiently using constrained convex optimization methods
(here we used an ADMM method similar to [26]).

π00 π10 π01 π11

3ms
X-corr 79.9 20.1 8.9 91.1

Prop. algo. 99.9 0.01 10.8 89.2

1ms
X-corr 57.4 42.6 16.9 83.1

Prop. algo. 99.9 0.01 18.6 81.4

0.3ms
X-corr 59.6 40.4 39.1 60.9

Prop. algo. 99.9 0.01 20.4 79.6

Table 1. Empirical detection performance (prob. in %).

Fig. 1. Depth maps estimated by the standard method (top) and the
proposed Bayesian algorithm (bottom). Distances are in meters.

The detection performance of the proposed and standard algo-
rithms is quantitatively assessed by comparing their empirical speci-
ficity π00 (decidingM(i,j)

0 whenM(i,j)
0 is true) and sensitivity π11

or equivalently their empirical probability of false alarm π10 = 1−
π00 and of miss π01 = 1−π11. Although the standard method does
not provide target detection results directly, it is possible to infer the
target presence by thresholding the estimated intensity images. In
all the results presented here, we set the threshold to η = 0.1, which
corresponds to an estimated target intensity 10 times smaller than
that of the Spectralon panel. Table 1 compares the detection per-
formance of the standard and proposed methods, averaged over all
pixels, for acquisition times of 3ms, 1ms and 0.3ms per pixel. The
results obtained by the proposed method with an acquisition time
of 30ms are used as ground truth here. This table shows that the
performance of the two algorithms degrade when reducing the ac-

quisition time. However, the proposed method (thanks to its target
detection ability and the different special regularizations) generally
provides lower probabilities of false alarm as well as less significant
performance degradation than the standard method.

Fig. 1 compares the estimated depth maps obtained by the stan-
dard and the proposed methods. These results show that for large ac-
quisition times, the two methods provide similar results. However,
when the acquisition time decreases, the two methods start to fail
in identifying the target positions. However, due to its better target
detection ability, the method proposed here provides more reliable
depth images as it can more accurately detect pixels not containing
a surface.

Fig. 2. Distance MSE cdfs provided by the standard (blue) and the
proposed (red) methods for different exposures.

The performance of the two methods are quantitatively eval-
uated using the distance mean squared errors (MSEs) defined by

MSE(di,j) =
∥∥∥d̂i,j − di,j∥∥∥2

2
, where ‖·‖2 denotes the `2-norm,

d̂i,j is the estimated value of di,j = 3 × 108ti,j/2. Since the
actual distances {di,j} are unknown for the data sets considered,
these values have been replaced by those estimated by the proposed
method for the longest acquisition time (30ms). Fig. 2 depicts the
cumulative density functions (cdfs) of the distance MSEs [11]. The
steeper the curve, the better the depth estimation. As expected, the
two methods performance generally degrades when reducing the ex-
posure (the curves go lower and more gradually). Note that for each
dataset, the cdfs are upper-bounded by the sensitivity π11 (see Table
1) of each method, which explains why the curves in Fig. 2 do not
reach 1. For the longer exposures, the two methods present simi-
lar depth estimation performance for the pixels actually containing
targets and the benefits of the proposed methods mainly rely on its
target detection ability (lower π10). For the shortest exposure, the
proposed background prior model (2), together with the target pres-
ence model (5), enables a more accurate depth image (lower π10 and
π01 and better depth estimation) than with the standard approach.

6. CONCLUSION

We presented a Bayesian algorithm for target detection and depth
imaging using sparse single-photon data. The experiments con-
ducted on real Lidar data demonstrate the ability of the proposed
method to detect and identify targets observed under difficult ob-
servation conditions (high and spatially variable background levels,
short acquisition times), with a better accuracy than the standard
method. In contrast to [11], we didn’t explicitly account for the
possible correlations affecting the intensity and/or depth images.
Although it is possible to apply the algorithm studied in [11] to
refine the depth/intensity images after the target detection step, it
would be interesting to extend the proposed model to capture addi-
tional parameter dependency. Finally, investigating less computa-
tionally intensive optimization-based alternatives (e.g., Expectation-
Maximization methods) and extending the model to multiple targets
are very interesting problems which are the subject of further inves-
tigations that will be reported in subsequent papers.
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