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ABSTRACT

Based on the orthogonality between the signal subspace and
the noise subspace, we propose a sparse recovery method
for the direction of arrival (DOA) estimation. With the
assumption of uncorrelated sources, signal covariance matrix
fitting is achieved by embedding the MUSIC-like weights
into a quadratic minimization, which is capable of prompting
the sparsity of the solution. Numerical results show that
the proposed method outperforms some other sparse recovery
methods.

Index Terms— Direction of arrival estimation, sparse
recovery, subspace fitting, array signal processing

1. INTRODUCTION

Direction of arrival (DOA) estimation is a fundamental issue
in array processing field, which can be applied in a wide
range, including radar, sonar, radio astronomy, wireless
communications, etc. [1]. Many DOA estimation algorithms
have been presented to achieve high spatial resolution that
is particularly useful for the limited sensor resources. The
conventional subspace-like algorithms include MUSIC [2],
ESPRIT [3], and Root-MUSIC [4], which have high spatial
resolution when the sources are uncorrelated. In recent
decade, the sparsity aware DOA estimation has been a
very popular topic. An early work for DOA estimation
based on sparse recovery is the so-called global matched
filter (GMF) [5] that utilizes a model-fitting approach to
improve upon the conventional beamformer. The classical
ℓ1-SVD algorithm [6] uses theℓ1 norm penalties and the
ℓ2 norm to enforce the sparsity and restrict the recovery
error, respectively. By introducing the methodology of
the weightedℓ1 minimization, a weighted GMF (WGMF)
and an improvedℓ1-SVD (subspace weightedℓ2,1-SVD)
were already proposed in [7] and [8] , respectively. The
resolution and the accuracy of DOA estimates are improved
because the weightedℓ1 minimization can further prompt the
sparsity of the solution. In [9]ℓ1-SVD is combined with
the weighted subspace fitting and the Sparse Recovery for
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Weighted Subspace Fitting (SRWSF) method was proposed.
It is noted that, the sparse recovery methods mentioned above
require the regularization parameter that compromises the
sparsity of the solution and the recovery error. Therefore,the
regularization parameter need be carefully selected. However,
determining proper values of the regularization parameteris a
difficult task in practical applications [10,11].

Some work have been made to develop the sparse re-
covery methods without the choice of the regularization
parameter. Sparse Iterative Covariance-based Estimation
(SPICE) does not require the regularization parameter and
ensures reliable DOA estimates with global convergence
[10]. However, it is reported in [12, 13] that the accuracy
of SPICE is unsatisfactory. By employing the maximum
likelihood principle, LIKelihood-based Estimation of Sparse
parameters (LIKES) has been derived to improve SPICE.
LIKES performs better than SPICE in term of accuracy
and resolution at the cost of the increased computational
burden [12,14]. Another regularization parameter free Sparse
Recovery algorithm via Covariance-like Fitting (SRCF) for
DOA estimation under power constraints was proposed in
[15], which has better performance than SPICE when the
number of snapshots is large enough. Other spare recovery
algorithms without regularization parameters including the
Sparse Learning via Iterative Minimization (SLIM) [16],
and the Iterative Adaptive Approach for Amplitude and
Phase EStimation (IAA-APES) [17] can also be regarded as
the modified versions of the adaptively reweighted SPICE
method with different weighting schemes [18].

In this paper, we propose a Subspace Fitting algorithm
via the Sparse Representation of the Signal Covariance (SF-
SRSC) for DOA estimation under power constraints without
determining the regularization parameter. By exploiting the
orthogonality between the signal subspace and the noise
subspace, a quadratic minimization is formulated to fit the
signal covariance matrix in a sparse fashion. Then power
constraints on the estimated spectrum is used to restrict the
retrieved energy. It is worth mentioning that MUSIC-like
weights are embedded into the objective function of the
quadratic minimization to form a weighted sparse recovery
and enhance the sparsity of the solution. Numerical examples
demonstrate that the proposed algorithm outperforms some
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existing sparse recovery methods including SRWSF, WGMF,
LIKES, and SRCF in terms of the DOA estimation accuracy
and the spatial resolution.

This paper is organized as follows. In the next section,
the signal model is introduced. In Section 3, based on the
assumption of uncorrelated sources we formulate a quadratic
minimization to resolve the DOA estimation problem. In
Section 4, some numerical experiments are provided to
illustrate the performances of the proposed method. A
conclusion is given in Section 5.

2. SIGNAL MODEL

Take the problem of DOA estimation withM sensors and
K far-field narrowband signals{sk(t), k = 1, 2, · · · ,K} as
an example, where the sources impinging on the array from
distinct directions{θk, k = 1, 2, · · · ,K}. The signal model
can be expressed as:

y(t) = As(t) + n(t), t = 1, 2, · · · , T., (1)

wherey(t), s(t), n(t) denote the measurements, the signal
vector, and the noise vector, respectively. The matrix
A ∈ CM×K is the array response matrix given byA =
[a(θ1), · · · , a(θK)] with

a(θk) = [ej2πf0x1sin(θk)/c, · · · , ej2πf0xMsin(θk)/c]T, (2)

where f0, c, and xm, denote the center frequency, the
propagation speed, and the the position of themth sensor with
m = 1, · · · ,M , respectively;(·)T denotes transpose. The
vectorn(t) is an additive noise vector with zero-mean and
the varianceσ2. Without loss of generality,n(t) is assumed
to be uncorrelated withs(t).

The covariance matrix ofy(t) can be expressed as

R = E{y(t)yH(t)}

= AE{s(t)sH(t)}AH + σ2IM

= ARsA
H + σ2IM , (3)

whereRs = E{s(t)sH(t)}, IM is aM ×M identity matrix,
(·)H denotes conjugate transpose.

Taking the eigenvalue decomposition ofR yields

R =

M
∑

m=1

λmumuH
m = UsΛsU

H
s + σ2UnU

H
n , (4)

whereλ1 ≥ λ2 ≥ · · · ≥ λK ≥ λK+1 = · · · = λM = σ2

are the eigenvalues ofR, Λs = diag{λ1, · · · , λK}, Λn =
diag{λK+1, · · · , λM}, Us andUn span the signal subspace
and the noise subspace, respectively,diag{·} denotes the
diagonal matrix. From (3) and (4), we have

ARsA
H = Us

(

Λs − σ2IK
)

UH
s . (5)

3. THE PROPOSED ALGORITHM FOR DOA
ESTIMATION

3.1. Subspace fitting via sparse representation of signal
covariance

Because of the orthogonality between the signal subspace and
the noise subspace, we have

‖UH
nUs

(

Λs − σ2IK
)

UH
s Un‖

2
F

= ‖UH
nARsA

HUn‖
2
F

= 0. (6)

Under the assumption of uncorrelated sources, the sparse
representation of signal covariance can be written as

ARsA
H = ΦPΦH, (7)

where the overcomplete basis matrixΦ = [φ1, · · · , φN ],
φn = [ej2πf0x1sin(αn)/c, · · · , ej2πf0xMsin(αn)/c]T, the angle
set {α1, · · · , αN} denotes a sampling grid of all possible
source locations,N is the number of the sampling grids,
P = diag{p1, · · · , pN}. Ideally, if and only ifαn ∈ {θk, k =
1, · · · ,K}, pn > 0 ; otherwisepn = 0. Thus the support set
can be defined asΓ , {n|pn > 0} .

Substituting (7) into (6) yields

f(p) = ‖UH
nARsA

HUn‖
2
F

= ‖UH
nΦPΦHUn‖

2
F

= tr
(

PΦHUnU
H
nΦPΦHUnU

H
nΦ

)

= tr (PBPB)

= pTDp, (8)

whereB = ΦHUnU
H
nΦ, p = [p1, · · · , pN ]T corresponds to

the diagonal elements ofP, D = B ⊙ B∗, tr(·), ⊙, and
(·)∗ denote the trace of matrix, the Hadamart product and
conjugate, respectively. The last equality in (8) is derived
from the diagonal characteristics ofP.

Moreover, we have

1Tp = tr
(

Λs − σ2IK
)

/M, (9)

where1 is the vector of all ones.
In practice, we have to replace the covarianceR with the

sampling covariancêR, whereR̂ = (1/T )
∑T

t=1 y(t)y
H(t).

The eigenvalue decomposition ofR̂ can be expressed as

R̂ =

M
∑

m=1

λ̂mûmûH
m, (10)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂M . A maximum likelihood
estimation ofσ2 can be written aŝσ2 =

∑M
K+1 λ̂m/(M −

K). Then, equation (8) and (9) need be replaced with the
following equations, respectively,

f(p) = pTD̂p, (11)
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and
1Tp = tr

(

Λ̂s − σ̂2IK

)

/M, (12)

where D̂ = B̂ ⊙ B̂∗, Ûn = [ûK+1, · · · , ûM ], B̂ =

ΦHÛnÛ
H
nΦ, Λ̂s = diag{λ̂1, · · · , λ̂K}.

Combining (11) and (12), the DOA estimation can be
carried out by the following quadratic minimization:

min
pn≥0

pTD̂p

s.t. 1Tp = β, (13)

whereβ = tr(Λ̂s − σ̂2IK)/M . Here, we employ the CVX
package [19] to solve the quadratic optimization problem
(13). Oncêp is obtained, the DOA estimation can be achieved
by determining the peaks of the estimated spatial spectrump̂.

3.2. Remark on the objective function

In what follows, we will show that the objective function in
(8) is equivalent to a MUSIC-like weighting scheme. We
define the MUSIC-like weightwi,j as below:

wi,j = |φH
i UnU

H
nφj |. (14)

If and only if i = j, wi,j becomes the MUSIC weightwi,i.
Furthermore, if and only ifi ∈ Γ or j ∈ Γ, wi,j = 0
because of the orthogonality between the signal subspace and
the noise subspace; otherwisewi,j > 0.

Substituting (14) into (8), we have:

f(p) = pTDp =

N
∑

i=1

N
∑

j=1

w2
i,jpipj . (15)

On one hand, from (15), it is noted that smaller weights
{wi,j = 0, i ∈ Γ or j ∈ Γ} and the signal-related items
{pipj , i ∈ Γ or j ∈ Γ} are linked together. Appointing
smaller weights{wi,j = 0, i ∈ Γ or j ∈ Γ} to all signal-
related items further consolidates the priority of the spectrum
peak {pi, i ∈ Γ} or {pj, j ∈ Γ} in the reconstruction
process. On the other hand, those positions that are more
likely corresponding to noise entries, i.e.,{pipj , i /∈ Γ and
j /∈ Γ}, are weighted by larger values{wi,j > 0, i /∈ Γ and
j /∈ Γ} so that they are encouraged to be close to zero in
the recovery result. Therefore, the proposed SFSRSC method
is in consistent with the methodology of the weighted sparse
signal recovery in [20] that can promote the sparsity of the
solution and improve the recovery performance. In practice,
D is replaced withD̂ and the approximation of weights can
be expressed as{wi,j ≈ 0 , i ∈ Γ or j ∈ Γ}. Therefore, the
above analysis still holds.

4. NUMERICAL EXAMPLES

In this section, some numerical examples are presented to
demonstrate the performance of the proposed method. The
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Fig. 1. RMSE versus SNR. The number of snapshots is 800,
the number of sensors is 10, the sources is uncorrelated, and
DOAs:{5.5◦, 16.1◦, 25.7◦}, 200 Monte Carlo trials.

results of several sparse recovery methods, i.e., SRWSF [9],
WGMF [7], LIKES [14], and SRCF [15], are also provided
for comparison. In all experiments we consider a uniformly-
spaced linear array (ULA) composed ofM = 10 sensors with
a spacing ofd = c/(2f0). The angle interval[−90◦, 90◦] is
uniformly sampled with 1801 grids.

In the first experiment, the Root Mean Square Errors
(RMSE) of the DOA estimation of these algorithms are
compared. Three uncorrelated sources with the same am-
plitude impinging on the array from{5.5◦, 16.1◦, 25.7◦}.
As shown in Fig.1, the proposed method can obtain more
accurate DOA estimates than other four methods when Signal
Noise Ratio (SNR) is high enough. Although SRWSF has
better performance when SNR is lower, it is noted that
SRWSF requires the regularization parameter1, while the
proposed SFSRSC method does not. In addition, as can be
seen from Fig.2, with the increasing number of snapshots,
the performance of the proposed method exceeds that of
other four methods. Furthermore, in contrast to LIKES and
SRCF that also do not require the regularization parameters,
the proposed method performs better when the number of
snapshots becomes larger.

In the second experiment, the spatial resolution of the
proposed algorithm is investigated. Two closely spaced
sources are located at±∆/2, where∆ denotes the source
separation and the units is the Rayleigh resolution (the
Rayleigh resolution for our problem is5.73◦ [21]). We follow
the definition of the spatial resolution in [22] that the two
sources are successfully resolved providing the estimateθ̂k
is located in the neighborhood of the true positionU(θk; γ).

1SRWSF and WGMF have to use the regularization parameter thatis a
user-dependent parameter (e.g., the confidence level of theestimated noise
energy that is manually set by the user), which results in theperformance
degradation providing the confidence level is improper.
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Fig. 2. RMSE versus number of snapshots. SNR is 5dB,
the number of sensors is 10, the sources is uncorrelated, and
DOAs:{5.5◦, 16.1◦, 25.7◦}, 200 Monte Carlo trials.

Here, the radius of the neighborhoodγ is set to equal to a
tenth of the Rayleigh resolution limitation, i.e.,γ = 0.573◦.
As can be seen from Fig.3, SFSRSC has higher probability
of successful separation than other four methods. The reason
for the improved spatial resolution is that the sparsity of the
solution of SFSRSC is enhanced by embedding the MUSIC-
like weights into the objective function.

In the third experiment, the averaged spatial spectrum
over 200 Monte carlo trials is plotted , where two correlated
sources have the same amplitude with the correlation coeffi-
cient of 0.6. Fig. 4 shows that the proposed method is robust
to the assumption of uncorrelated sources and works well in
correlated source scenario.

5. CONCLUSION

We present a DOA estimation method by a linearly con-
strained quadratic programming. By using the orthogonality
between the signal subspace and the noise subspace, the
MUSIC-like weights are embedded into the objective func-
tion, which can enhance the sparsity of the solution and
improve the performance of the sparse recovery. Numerical
experiments demonstrate that the proposed method has better
performance than SRWSF, WGMF, LIKES, and SRCF for
uncorrelated sources and works well for correlated sources.
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