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ABSTRACT

Direction of arrival (DOA) estimation via sparse signal recovery

(SSR) has recently attracted a considerable research interest due

to its various advantages over the conventional DOA estimation

methods. Yet, the performance of the SSR-based algorithms can be

further enhanced by exploiting the structure of strictly non-circular

(NC) signals. In this paper, we present a novel strategy to take

the NC signal structure into account for the SSR, which results in

a two-dimensional SSR problem. Thereby, the known benefits as-

sociated with NC sources can be achieved. Moreover, we address

the 2-D off-grid problem by proposing a low-complexity procedure

that estimates the sources’ grid offset from the closest neighboring

grid points. For a single off-grid source, we show analytically that

the 2-D offset estimation problem is separable, allowing to per-

form the offset estimation in both dimensions independently. We

also propose a numerical procedure for the joint estimation of the

grid offsets of two closely-spaced sources. The effectiveness of the

proposed methods is demonstrated via simulations.

Index Terms— Compressed sensing, sparse signal recovery,

non-circular sources, off-grid model, DOA estimation.

1. INTRODUCTION

Estimating the directions of arrival (DOAs) of signals captured by

an antenna array has long been of great research interest [1] due to

its wide applications in radar, sonar, channel sounding, and wireless

communications. Previous work has shown that if the signals exhibit

a strictly second-order (SO) non-circular (NC) structure [2], exploit-

ing this property can improve the performance of the conventional

parameter estimation algorithms [1]. Consequently, a great number

of DOA estimation algorithms have been proposed [3]-[7] that take

the signals’ non-circularity into account to improve the estimation

accuracy and double the number of identifiable sources. Such strictly

non-circular signals are used in various digital modulation schemes

such as BPSK, ASK, Offset-QPSK, PAM, etc. The more general

case of coexisting circular and strictly non-circular sources has been

addressed in [8]-[10].

In recent years, the new concept of addressing the conventional

DOA estimation problem via sparse signal recovery (SSR) or com-

pressed sensing (CS) [11] has attracted significant research attention.

According to this representation, the array response is modeled as

the superposition of few wavefronts in an overcomplete basis, i.e.,

the received signal power is sparse in the angular domain. Various

sparsity-based DOA estimation algorithms have been proposed of
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late [12]-[15]. It has been observed that these sparsity-based algo-

rithms, when compared to the conventional methods, can provide

benefits in challenging scenarios such as a high source correlation,

a low sample size, unknown model order, etc. However, one com-

mon problem they face is the required sampling of the continuous

angular domain with a predefined grid in order to construct a finite

dictionary. As a consequence, the true DOAs mostly lie off the dis-

cretized grid, which results in a performance degradation due to the

model mismatch. Various solutions to the off-grid problem include

an adaptive refinement of the grid [12], statistical modeling and fit-

ting of the mismatch error [16], and a low-complexity analytical so-

lution by explicitly estimating the grid offset [17].

The concept of exploiting the non-circularity property has re-

cently been introduced for sparsity-based DOA estimation [18], [19].

While [18] proposes a sparse covariance matrix representation of

the SO statistics of the non-circular data, in [19], the authors adopt

a strategy, which relies on a sparsity-based fitting of the NC sub-

spaces. However, both algorithms require a rather complex setting

of the sparsity-inducing parameters depending on the scenario, are

limited to the case of uncorrelated sources, and do not deal with the

critical off-grid problem.

In this paper, we present a new approach to exploiting the sig-

nals’ strict non-circularity via sparse recovery. As NC signals usu-

ally have an unknown rotation phase, we need to introduce another

finite dictionary for the rotation phase domain along with that for

the spatial domain. Therefore, the recovery problem results in a two-

dimensional (2-D) sparse power spectrum estimation. By adding this

additional dimension to the original SSR problem, the known bene-

fits associated with NC sources [3]-[7] can be achieved analogously

via sparse signal representation. As a result, even closely-spaced NC

sources can be distinguished by their phase discrimination. In order

to handle the resulting 2-D off-grid problem, we first show analyt-

ically by considering a single NC off-grid source that the 2-D grid

offset estimation is separable, which enables the application of the

low-complexity grid offset estimation [17] in both dimensions in-

dependently. Additionally, we propose a numerical joint offset es-

timation procedure for two closely-spaced NC sources. Simulation

results demonstrate the effectiveness of the proposed methods.

2. SYSTEM MODEL AND NC PREPROCESSING

Suppose that d narrow-band planar wavefronts from stationary

sources in the far field are captured by an M -element sensor array.

The noise-corrupted array output at T subsequent snapshots can be

collected in the measurement matrix

X = A(µ)S +N ∈ C
M×T , (1)
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where A(µ) = [a(µ1), . . . ,a(µd)] ∈ C
M×d contains the array

steering vectors for the spatial frequencies µ = [µ1, . . . , µd]
T, S ∈

C
d×T represents the symbols, and N ∈ C

M×T consists of the ad-

ditive white Gaussian sensor noise samples. In the case of strictly

non-circular sources, S can be written as S = ΨS0, where Ψ =
diag{ejϕi}di=1 contains the rotation phase shifts ϕ = [ϕ1, . . . , ϕd]

T

on its diagonal and S0 ∈ R
d×T is a real-valued symbol matrix.

In order to exploit the structure of the strictly non-circular

sources, the following preprocessing scheme is applied to (1) to

form the augmented measurement matrix X(nc) ∈ C
2M×T [6], [7]

X
(nc) =

[

X
ΠMX∗

]

=

[

A(µ)Ψ
ΠMA∗(µ)Ψ∗

]

S0 +

[

N
ΠMN∗

]

(2)

= A
(nc)(µ,ϕ)S0 +N

(nc), (3)

where ΠM is the M × M matrix with ones on its anti-diagonal.

It has been shown that processing X(nc) instead of X reduces the

estimation error and doubles the number of resolvable sources [7].

3. SPARSE NC SIGNAL RECOVERY

In this section, we apply the preprocessing scheme for NC sources

from the previous section to sparsity-based DOA estimation.

We start with the common sparse signal representation of (1),

which interprets X as a set of multiple measurement vectors (MMV)

that is d-sparse in an overcomplete basis obtained by discretizing the

array manifold. Thus, an equivalent representation of (1) is given by

X = Ã(µ̃)S̃ +N ∈ C
M×T , (4)

where Ã(µ̃) ∈ C
M×Nµ contains the sampling of the spatial fre-

quency range [0, 2π] at the Nµ grid points µ̃ = [µ̃1, . . . , µ̃Nµ ]
T.

Typically, Nµ = MPµ, where Pµ > 1 is the oversampling fac-

tor such that Nµ > M > d. For simplicity, we consider uni-

form sampling with µ̃nµ = (nµ − 1)∆µ, nµ = 1, . . . , Nµ, where

∆µ = 2π/Nµ is the grid spacing. Moreover, S̃ ∈ C
Nµ×T is the

row-sparse matrix of interest, i.e., its columns share the same sup-

port. The support of the non-zero rows of S̃ then corresponds to the

locations of the DOAs on the spatial grid.

3.1. Preprocessing for Non-Circular Sources

In order to benefit from the above-mentioned advantages of process-

ing NC sources in SSR based on (4), we exploit the NC structure of

S̃ by applying a preprocessing step similar to that in (3). However,

since the array steering vectors in A(nc)(µ,ϕ) in (3) depend on the

unknown matrix Ψ, we need to introduce a second grid by discretiz-

ing the rotation phase domain, resulting in a 2-D grid. Then, a sparse

representation of X(nc) accounting for the NC structure is given by

X
(nc) = Ã

(nc)(µ̃, ϕ̃)S̃0 +N
(nc) = X

(nc)
0 +N

(nc), (5)

where Ã(nc)(µ̃, ϕ̃) ∈ C
2M×NµNϕ is the new dictionary and S̃0 ∈

R
NµNϕ×T is the corresponding real-valued row-sparse matrix. The

2-D grid embedded in Ã(nc)(µ̃, ϕ̃) is defined by the NµNϕ tuples

(µ̃nµ , ϕ̃nϕ), nµ = 1, . . . , Nµ; nϕ = 1, . . . , Nϕ.Thus, the rota-

tion phase range [0, π] is sampled at ϕ̃ = [ϕ̃1, . . . , ϕ̃Nϕ ]
T with

the uniform grid ϕ̃nϕ = (nϕ − 1)∆ϕ, nϕ = 1, . . . , Nϕ, where

∆ϕ = π/Nϕ and Nϕ = MPϕ with Pϕ > 1.

Then, the overcomplete dictionary Ã(nc)(µ̃, ϕ̃) is defined as

Ã
(nc)(µ̃, ϕ̃) =

[

Ã(nc)(µ̃, ϕ̃1) · · · Ã(nc)(µ̃, ϕ̃Nϕ)
]

, (6)

where Ã(nc)(µ̃, ϕ̃nϕ) = [AT(µ̃)ejϕ̃nϕ , (ΠMA∗(µ̃))Te−jϕ̃nϕ ]T∈

C
2M×Nµ . Therefore, the effective NµNϕ-point sampling grid is

given by the points k = (nϕ − 1)Nµ + nµ. Note that the extended

row dimensions of the dictionary Ã(nc)(µ̃, ϕ̃) can be interpreted as

a virtual doubling of the number of sensor elements.

If the array is centro-symmetric, i.e., it is symmetric with respect

to its centroid, and its phase reference is at the center, the property

ΠMÃ∗(µ̃) = Ã(µ̃) holds. Then, the 2-D dictionary Ã(nc)(µ̃, ϕ̃)
in (6) can be compactly expressed as

Ã
(nc)(µ̃, ϕ̃) = B(ϕ̃)⊗ Ã(µ̃), (7)

where B(ϕ̃) = [b(ϕ̃1), . . . , b(ϕ̃Nϕ)] ∈ C
2×Nϕ with b(ϕ̃nϕ) =

[ejϕ̃nϕ , e−jϕ̃nϕ ]T and ⊗ denotes the Kronecker product.

3.2. NC Signal Recovery Problem

In SSR, solving the ℓ0-problem to estimate the signal support, i.e.,

min ‖S̃0‖2,0, where ‖X‖p,q = [
∑N

j=1(
∑n

i=1 |Xj,i|
p)q/p]1/q , is

NP-hard. Therefore, the original ℓ0-problem is usually approximated

by a convex ℓ1-problem. The augmented MMV problem based on

(5) can be formulated as

min
S̃0∈R

NµNϕ×T

∥

∥S̃0

∥

∥

2,1
(8)

s. t.
∥

∥X
(nc) − Ã

(nc)(µ̃, ϕ̃)S̃0

∥

∥

F
≤

√

β, (9)

where β is chosen as β = Tr{E{N (nc)N (nc)H}} = 2MNσ2
n.

Problem (9) can be solved by any sparse recovery algorithm, e.g.,

ℓ1-type algorithms such as the basis pursuit denoising (BPDN) al-

gorithm [20] or greedy algorithms such as the orthogonal matching

pursuit (OMP) [21]. Due to the effective sampling grid, closely-

spaced NC sources (even if they are on the same grid point) are

well-separated as long as they have a rotation phase discrimination.

Therefore, not only the support estimation is improved, but also the

estimated amplitudes of the sparse components in the spectrum. The

support in both dimensions can be found by matching the effective

grid into the 2-D grid.

3.3. Number of Resolvable Sources

It was shown in [12] through simulations and later proven in [13] that

at most M − 1 sources can be resolved via the conventional MMV

model in (4). Supported by strong numerical evidence, this suggests

that due to the doubling of the dimensions in (5) at most 2(M − 1)
NC sources can be uniquely resolved.

4. 2-D OFFGRID ESTIMATION

If all the NC sources lie on a grid point, the model in (5) holds

exactly. However, this assumption is highly unrealistic in practice,

leading to a 2-D off-grid problem. In order to handle this model mis-

match, we extend the previous work on the 1-D off-grid problem [17]

to the NC case as well as the MMV case. As a result, we propose two

efficient solutions for a single NC off-grid source and two closely-

spaced NC off-grid sources that are used as a post-processing step

after the support estimation via SSR. We show analytically for a sin-

gle off-grid source that the atoms in the 2-D grid are separable, i.e.,

the off-grid estimation can be performed in both dimensions sepa-

rately. Based on these findings, two simple low-complexity estima-

tors are presented that require a considerably lower computational

complexity compared to the SSR.

Let us first introduce the off-grid model for the i-th source lo-

cated at the pair (µi, ϕi), i = 1, . . . , d, in both dimensions as

µi = µ̃Lµi
+ ǫi(µ̃Lµi

+1 − µ̃Lµi
) = (Lµi

− 1 + ǫi)∆µ, (10)

ϕi = ϕ̃Lϕi
+ δi(ϕ̃Lϕi

+1 − ϕ̃Lϕi
) = (Lϕi

− 1 + δi)∆ϕ, (11)
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where we have used the defined uniform sampling grid on the right

hand side. Moreover, Lµi
and Lϕi

are the respective nearest left

grid points obtained from the support estimation, and ǫi, δi ∈ [0, 1]
model the grid offset. It should be noted that for ǫi = δi = 0, (10)

and (11) reduce to the on-grid model in (5).

For simplicity, we assume a uniform linear array (ULA) of

isotropic sensors as an example for centro-symmetric arrays. The

steering vectors are given by a(µi) =
[

e−jM−1

2
µi , . . . , ej

M−1

2
µi
]T

,

i.e., the phase reference coincides with the array centroid. Under this

assumption, the augmented steering vector a(nc)(µi, ϕi) can be ex-

pressed according to (7) as a(nc)(µi, ϕi) = [ejϕi , e−jϕi ]T ⊗a(µi).

4.1. Single Off-Grid Source

To gain more insights into the 2-D off-grid problem, we first consider

a single NC off-grid source. In [17], it has been shown that each 1-D

off-grid source can be well approximated by the atoms correspond-

ing to the two closest grid points. As a consequence, sparse recovery

algorithms concentrate the signal power at exactly those grid points.

This suggests that a similar approach can be used in the 2-D case

for an NC off-grid source. Thus, based on the relative height of the

peaks at the two neighboring atoms in both grid dimensions, we can

estimate the corresponding two offsets to approximate the NC off-

grid source.

In the noiseless case, the model (3) for a single NC source sim-

plifies to X
(nc)
0 = a(nc)(ǫ, δ)sT

0 , where a(nc)(ǫ, δ) = a(nc)(µ̃L +
ǫ∆µ, ϕ̃L + δ∆ϕ) ∈ C

2M×1 is the true steering vector and s0 ∈

R
T×1. Thus, we represent a(nc)(ǫ, δ) by the linear model

a
(nc)(ǫ, δ) ≈ Ã

(nc)(µ̃L, µ̃L+1, ϕ̃L, ϕ̃L+1)α, (12)

where the matrix Ã(nc)(µ̃L, µ̃L+1, ϕ̃L, ϕ̃L+1) = [ã(nc)(µ̃L, ϕ̃L),

ã(nc)(µ̃L+1, ϕ̃L), ã
(nc)(µ̃L, ϕ̃L+1), ã

(nc)(µ̃L+1, ϕ̃L+1)]∈C
2M×4

contains the neighboring grid points and α = [α1, . . . , α4]
T con-

tains the coefficients. The coefficients α can be found by solving

the least squares problem

min
α

∥

∥X
(nc)
0 − Ã

(nc)(µ̃L, µ̃L+1, ϕ̃L, ϕ̃L+1)αs
T
0

∥

∥

2

F
, (13)

where sT
0 on both sides can be neglected. The solution is given by

α̂(ǫ, δ) = Ã
(nc)(µ̃L, µ̃L+1, ϕ̃L, ϕ̃L+1)

+
a
(nc)(ǫ, δ), (14)

where (·)+ denotes the Moore-Penrose pseudo inverse. After ex-

panding the pseudo inverse in (14), we note that for instance

aH
µ̃L

aµ̃L+1
=

∑(M−1)/2

m=−(M−1)/2 ejm∆µ = D(∆µ), which is similar

for the combinations of µ̃L, µ̃L+1, µ̃L + ǫ∆µ, and where we have

defined

D(y) =

{

M if y = 0

sin(yM/2)/ sin(y/2) otherwise.
(15)

Then, denoting d(x) = [D(x∆µ), D((x − 1)∆µ)]
T ∈ R

2×1 and

c(x) = [cos(x∆ϕ), cos((x− 1)∆ϕ)]
T ∈ R

2×1 as well as D(x) =
[d(x),d(x + 1)] ∈ R

2×2 and C(x) = [c(x), c(x + 1)] ∈ R
2×2,

we obtain

α̂(ǫ, δ) =
(

C(0)⊗D(0)
)

−1(
c(δ)⊗ d(ǫ)

)

(16)

= α(δ)⊗α(ǫ), (17)

where α(δ) = [α1(δ), α2(δ)]
T and α(ǫ) = [α1(ǫ), α2(ǫ)]

T with

α1(δ) =
cos(δ∆ϕ)− cos(∆ϕ) cos((δ − 1)∆ϕ)

1− cos2(∆ϕ)
(18)

α2(δ) =
cos((δ − 1)∆ϕ)− cos(∆ϕ) cos(δ∆ϕ)

1− cos2(∆ϕ)
(19)

α1(ǫ) =
MD(ǫ∆µ)−D(∆µ)D((ǫ− 1)∆µ)

M2 −D2(∆µ)
(20)

α1(ǫ) =
MD((ǫ− 1)∆µ)−D(∆µ)D(ǫ∆µ)

M2 −D2(∆µ)
. (21)

Thus, the 2-D offset estimation is separable in both grid dimensions.

As it can be shown that αn(ǫ) and αn(δ), n = 1, 2, become linear

in ǫ and δ with increasing Pµ and Pϕ, the simple 1-D estimator from

[17]

ǫ̂ =
α2(ǫ)

α1(ǫ) + α2(ǫ)
, δ̂ =

α2(δ)

α1(δ) + α2(δ)
(22)

can be applied in both dimensions independently. Arranging the el-

ements of α̂ in a matrix B, we obtain B = α(δ)α(ǫ)T, which is of

rank 1.

In the noisy case, the matrix X
(nc)
0 in (13) needs to be replaced

by X(nc). As a consequence, B becomes an estimate that is not

rank one anymore. However, a good rank-one approximation can be

obtained from the SVD of B̂, i.e., B̂ = uvH = α̂(δ)α̂T(ǫ). Based

on α̂(δ) and α̂(ǫ), the two estimators in (22) are used to determine

the grid offsets.

4.2. Two Off-Grid Sources

In the case of two sources, their mutual influence depends on the

correlation between the array steering vectors. If the source sepa-

ration is much larger than Pµ grid points, which corresponds to the

Rayleigh resolution limit 2π/M , they are separable. Due to the ef-

fective grid, this is the case for two closely-spaced NC sources if

their phases discriminate. Therefore, the two sources can be treated

independently and the estimators (22) can be applied for each source

separately.
However, this approach fails for closely-spaced sources with the

same rotation phase. Thus, inspired by [17], we propose a numer-
ical joint off-grid estimation procedure for two NC sources with
the same rotation phase. Assuming that the correct support has
been estimated via SSR, we approximate each of the two sources
located at (µi, ϕi), i = 1, 2, by the four respective neighboring
grid points Lµi

, Lµi
+ 1, Lϕi

, and Lϕi
+ 1 as an extension of

(12). Denote Ã
(nc)
i ∈ C

2M×4 as the matrix containing the neigh-
boring grid points of the i-th source as in (12). Then, in analogy

to the noiseless case in (14), we have G(ǫ, δ) = Ã
(nc)
1,2

+X
(nc)
0 =

Ã
(nc)
1,2

+A(nc)(ǫ, δ)S0, where Ã
(nc)
1,2 = [Ã

(nc)
1 , Ã

(nc)
2 ] ∈ C

2M×8

and G(ǫ, δ) ∈ R
8×T is the matrix of coefficients that depends on

ǫ = [ǫ1, ǫ2]
T and δ = [δ1, δ2]

T. It can be shown that G(ǫ, δ) can

be expressed as G(ǫ, δ) = D−1
0 D(ǫ, δ)S0, where

D0 =

[

C(0)⊗D(0) C(dϕ)⊗D(dµ)
C(dϕ)T ⊗D(dµ)T C(0)⊗D(0)

]

∈ R
8×8,

D(ǫ, δ)=

[

c(δ1)⊗ d(ǫ1) c(δ2 + dϕ)⊗ d(ǫ2 + dµ)
c(δ1 − dϕ)⊗ d(ǫ1 − 1) c(δ2)⊗ d(ǫ2)

]

∈R
8×2,

where dµ = Lµ2
− Lµ1

and dϕ = Lϕ2
− Lϕ1

. Next, we consider

the noisy case, which yields Ĝ = Ã
(nc)
1,2

+X(nc), and define Ḡ =

D0Ĝ. For the comparison of the coefficients Ḡ obtained from the

measurements with the analytical approximation G(ǫ, δ), we note
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that the columns of G(ǫ, δ) are a linear combination of the columns

of D(ǫ, δ). Thus, we aim at maximizing the overlap between Ḡ and

the column space of D(ǫ, δ). To this end, we propose to estimate

the off-grid parameters by minimizing the cost function

J(ǫ, δ) =
∥

∥Ḡ−D(ǫ, δ)D+(ǫ, δ)Ḡ
∥

∥

2

F
. (23)

We have observed that the function J(ǫ, δ) is smooth and convex in

the parameter range ǫi, δi ∈ [0, 1] with a unique minimum. There-

fore, (23) can be minimized by any local optimization method, e.g.,

the gradient descent algorithm.

It is worth mentioning that the presented joint estimation proce-

dure can be extended straightforwardly if a group of more than two

closely-spaced sources with the same rotation phase is present.

5. SIMULATION RESULTS

In this section, we present simulations to assess the performance of

the proposed SSR algorithm for strictly non-circular sources. To this

end, we use the OMP algorithm for the SSR step and compare the

proposed offset estimation scheme “NC OMP Joint” according to

(23) to its non-NC counterpart from [17]. For the stopping criteria

of OMP, the sparsity level d is assumed known. Note that the OMP

method can be replaced by any other SSR algorithm. We also con-

sider the deterministic CRB “Det CRB” as well as the deterministic

CRB for NC sources “Det NC CRB” [22]. For the computation of

the mean square error (MSE), we only take the estimation error in

the spatial frequency domain µ into account as the estimation of the

rotation phases is not of primary interest, but can be added straight-

forwardly. For the numerical results, we adopt a ULA of M = 8
isotropic sensors with half-wavelength spacing. The phase reference

is at the centroid. The symbols are drawn from a real-valued Gaus-

sian distribution and the noise is circularly symmetric white complex

Gaussian with σ2
n = 1/SNR. We have used 300 Monte Carlo trials.

In Fig. 1, we display the MSE versus the SNR for a scenario,

where Pµ = 8, Pϕ = 6, and d = 2 uncorrelated sources are located

at (15.1∆µ, 10.2∆ϕ) and (17.5∆µ, 34.2∆ϕ), respectively, i.e., we

have ∆µ = µ2 − µ1 = 0.3Pµ∆µ and ∆ϕ = ϕ2 − ϕ1 = 24∆ϕ =
π/2. The number of snapshots is T = 20. Note that in such a setting

of two closely-spaced uncorrelated NC sources with a phase discrim-

ination of π/2, the maximum NC gain can be achieved [7]. It can

be seen from Fig. 1 that the proposed algorithm for NC sources pro-

vides a significantly lower estimation error compared to its non-NC

counterpart. The “NC OMP Joint” algorithm successfully estimates

the grid offset and achieves the deterministic NC CRB.

Fig. 2 illustrates the MSE versus the spatial separation ∆µ,

where we have d = 2 uncorrelated sources at µ1 = 20.2∆µ and

µ2 = µ1 + ∆µ. The SNR is fixed to 40 dB and the remaining

parameters are kept the same. We observe again that the NC scheme

outperforms its counterpart as it is constant for all the distances.

In Fig. 3, we show the MSE versus the rotation phase separation

∆ϕ for d = 2 sources at µ = [2.1, 4.5]∆µ with ϕ1 = 5.1∆ϕ and

ϕ2 = ϕ1 + ∆ϕ. All the parameters are kept the same as before. It

can be seen that the NC method provides the best performance for

a phase discrimination of ∆µ = π/2 while its non-NC counterpart

remains constant.

6. CONCLUSION

In this paper, we have presented a novel strategy to take the NC sig-

nal structure into account for the SSR-based DOA estimation, which

results in a two-dimensional SSR problem. Thereby, the benefits

associated with NC sources can be achieved. Moreover, we have

addressed the 2-D off-grid problem by proposing a low-complexity
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Fig. 2. MSE versus ∆µ for M = 8, Pµ = 8, Pϕ = 6, T = 20,

d = 2 sources at µ1 = 20.2∆µ and µ2 = µ1 +∆µ.
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Fig. 3. MSE versus ∆ϕ for M = 8, Pµ = 8, Pϕ = 6, T = 20,

d = 2 sources at µ = [2.1, 4.5]∆µ with ϕ1 = 5.1∆ϕ and ϕ2 =
ϕ1 +∆ϕ.

procedure that estimates the sources’ grid offset from the closest

neighboring grid points. For a single off-grid source, we have shown

analytically that the 2-D offset estimation problem is separable,

which allows to perform this step in both dimensions independently.

We have also proposed a numerical scheme for the joint estimation

of the grid offsets of two closely-spaced sources. The effectiveness

of the proposed methods has been demonstrated via simulations.
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