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ABSTRACT

The authors have recently proposed two kinds of gridless sparse
methods for direction of arrival (DOA) estimation that exploit joint
sparsity among snapshots and completely resolve the grid mismatch
issue of previous grid-based sparse methods. One is based on covari-
ance fitting from a statistical perspective and termed as the gridless
SPICE (GL-SPICE, GLS); the other uses deterministic atomic norm
optimization which extends the recent super-resolution and contin-
uous compressed sensing framework from the single to the multi-
snapshot case. In this paper, we unify the two techniques by inter-
preting GLS as atomic norm methods in various scenarios. As a
byproduct, we are able to provide theoretical guarantees of GLS for
DOA estimation in the case of limited snapshots.

Index Terms— Atomic norm, DOA estimation, gridless sparse
methods, gridless SPICE (GLS).

1. INTRODUCTION

In array processing, we are interested in estimation of directions of
a few narrow-band sources from observed snapshots of a sensor ar-
ray. In particular, for anN -element uniform linear array (ULA) with
sensors spaced by half a wavelength the snapshots can be modeled
as follows (see, e.g., [1]):

y(t) =

K∑
k=1

a (fk) sk(t) + e(t), t = 1, . . . , L, (1)

where t indexes the snapshot andL is the number of snapshots. Each
snapshot y(t) ∈ CN is a noisy superposition ofK sinusoidal signals

{a (fk) sk(t)}, where a (fk) =
[
1, ei2πfk , . . . , ei2π(N−1)fk

]T
∈

CN has uniform samples of a sinusoidal signal with frequency fk ∈
[0, 1) and sk(t) ∈ C is the complex amplitude at time t. e(t) de-
notes the noise. Note that there exists a one-to-one mapping between
the frequencies {fk} and the source directions. For notational sim-
plicity, we only consider estimation of {fk} in this paper.

There are a whole host of methods for estimation of the frequen-
cies in (1). A relatively recent subset is inspired by the literature on
sparse representation and compressed sensing (CS) and usually des-
ignated as “sparse methods” (see, e.g., [2, 3]). In these methods,
however, the frequency estimates have to be confined in a set of grid
points such that the observed snapshots can be sparsely represent-
ed under a finite discrete dictionary—a prerequisite for carrying out
sparse recovery according to conventional wisdom. An estimation
bias is thus induced by grid mismatch that becomes statistically sig-
nificant when N or L or the signal-to-noise ratio (SNR) increases.

The research of the project was supported by Ministry of Education,
Republic of Singapore, under grant AcRF TIER 1 RG78/15.

To mitigate the problem several solutions have been proposed (see,
e.g., [4, 5]).

The authors have recently proposed two kinds of gridless sparse
methods, in which the frequencies are treated as continuous (as op-
posed to discretized/gridded) parameters, and completely resolve
the grid mismatch issue of the existing grid-based sparse method-
s [6–10]. The first technique is termed as the gridless SPICE (GL-
SPICE, GLS) [6, 7] [also referred to as the sparse and parametric
approach (SPA)], that is from a statistical perspective and uses the
covariance fitting criterion of the SPICE method [11]. The other uses
deterministic atomic norm optimization inspired by the recent super-
resolution and continuous CS framework introduced in [12, 13] for
line spectral estimation (a.k.a. DOA estimation with a single snap-
shot). The papers [8,9] extend the atomic norm methods and theoret-
ical results in [12, 13] to the multi-snapshot case by exploiting joint
sparsity among the snapshots. A reweighted atomic norm method
was also proposed in [10] for further enhancing sparsity and resolu-
tion. Note that both GLS and the atomic norm methods are appli-
cable to the sparse linear array (SLA) case that corresponds to DOA
estimation from partial entries of y(t) in (1).

Note that several existing results on gridless sparse methods
have been focused on the single snapshot case (see, e.g., [14–16]).
In the case of multiple snapshots, the atomic norm method as intro-
duced in [8, 9] was also independently proposed in [17]. A different
atomic norm method was presented in [18] which, however, is with-
in the existing single snapshot framework and does not exploit the
joint sparsity.

Motivated by the observation that GLS and the atomic norm
methods have seemingly related SDP formulations, we investigate
their relationship in this paper. In both cases of ULA and SLA we
show that GLS is equivalent to atomic norm methods in various sce-
narios and therefore unify the two kinds of gridless sparse methods.
As a byproduct, we provide theoretical guarantees of GLS for DOA
estimation in the case of limited snapshots based on existing results
on atomic norm methods.

Notations used in this paper are as follows. R, R+ and C de-
note the sets of real numbers, nonnegative real numbers and complex
numbers, respectively. Boldface letters are reserved for vectors and
matrices. ‖·‖1, ‖·‖2 and ‖·‖F denote the `1, `2 and Frobenius norms,
respectively. ·T and ·H are the matrix transpose and conjugate trans-
pose. xj is the jth entry of a vector x,Aj is the jth row of a matrix
A, and Ajk is the jkth entry of A. Unless otherwise stated, AΩ is
a submatrix of A and is composed of the rows indexed by a set Ω.
For a vector x, diag (x) is a diagonal matrix with x being its diag-
onal. x � 0 means xj ≥ 0 for all j. tr (·) denotes the matrix trace.
E [·] denotes expectation. A ≥ B means that A − B is positive
semidefinite.
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2. PRELIMINARY RESULTS

2.1. GLS

GLS estimates the frequencies via covariance fitting. Let f =
[f1, . . . , fK ]T ∈ [0, 1)K , A (f) = [a (f1) , . . . ,a (fK)] and
Y = [y(1), . . . ,y(L)]. The data covariance is given by

R = E
{
y(t)yH(t)

}
= A (f) diag (p)AH (f) + diag (σ) (2)

under the assumption of uncorrelated sources, where the entries of
p ∈ RK+ are powers of the sources and the entries ofσ ∈ RN+ , which
are not necessarily equal, are noise variances. Denote the sample
covariance R̃ = 1

L
Y Y H . According to whether R̃

−1
exists, GLS

minimizes the covariance fitting criterion of the grid-based SPICE
method [11, 19]:

h1 (θ,p,σ) =
∥∥∥R− 1

2

(
R̃−R

)∥∥∥2

F
(3)

or

h2 (θ,p,σ) =

∥∥∥∥R− 1
2

(
R̃−R

)
R̃
− 1

2

∥∥∥∥2

F

. (4)

The key step of GLS is to reparameterizeR in a linear way and
then rewrite the minimization of (3) or (4) as an SDP. In particular,
there exists a (Hermitian) Toeplitz matrix T (u) formed by u ∈ CN
such that

T (u) = A (f) diag (p)AH (f) . (5)

The equation in (5) is known as the Vandermonde decomposition
in which there exists a one-to-one mapping between (f ,p) and u
whenever K ≤ N − 1 and T (u) ≥ 0 (see, e.g., [1]). Therefore,

R = T (u) + diag (σ) (6)

becomes a linear function of (u,σ). As a result, the GLS minimiza-
tion problem with

h1 (θ,p,σ) = tr
(
R̃R−1R̃

)
+ tr (R)− 2tr

(
R̃
)

(7)

can be formulated as the following SDP:

min
X,u,{σ�0}

tr (X) + tr (R) ,

subject to
[
X R̃

R̃ R

]
≥ 0, T (u) ≥ 0,

(8)

whereR is given in (6). Once the SDP is solved, for example, using
SDPT3 [20], the estimates of f and p can be retrieved based on the
decomposition in (5) (see details in [6]). Like its grid-based version
GLS does not require the noise level and is totally hyper-parameter
free. It is noted that GLS can also deal with the SLA case (see Sec-
tion 4 and [6]).

2.2. Atomic Norm Methods

For a multi-snapshot signal Z ∈ CN×L the atomic norm is defined
as [8, 9]

‖Z‖A , inf
fk,sk

{∑
k

‖sk‖2 : Z =
∑
k

a (fk) sk

}

= min
u,X

1

2
√
N

[tr (X) + tr (T (u))] ,

subject to
[
X ZH

Z T (u)

]
≥ 0,

(9)

where sk , [sk(1), . . . , sk(L)] ∈ C1×L is a row vector. The multi-
snapshot atomic norm in (9) is an extension of the atomic norm (or
total variation norm) in [12, 13] specified for a single snapshot. The
frequencies are encoded in T (u) and can be obtained based on the
Vandermonde decomposition as in GLS. It is shown in [9, 12, 13]
that if Z is composed of a few frequency components that are suf-
ficiently separate, then the frequencies can be exactly recovered by
computing ‖Z‖A (or by minimizing ‖Z‖A if only part of the rows
of Z are observed).

To overcome the resolution limit of atomic norm for frequency
estimation, the concept of weighted atomic norm is introduced in
[10] by adaptively enhancing resolution. Given a weighting function

w(f) =
(

1
N
aH (f)Wa (f)

)− 1
2 ≥ 0 with W ∈ CN×N , which

is used to specify the preference of the frequencies, the weighted
atomic norm is defined as

‖Z‖Aw , inf
fk,sk

{∑
k

‖sk‖2
w (fk)

: Z =
∑
k

a (fk) sk

}

= min
u,X

1

2
√
N

[tr (X) + tr (WT (u))] ,

subject to
[
X ZH

Z T (u)

]
≥ 0.

(10)

The atomic norm in (9) is obviously a special case of the weighted
atomic norm in (10) with a constant weighting function (e.g., when
W is an identity matrix).

The atomic norm methods in [8–10] carry out deterministic op-
timization which seeks a sparse candidate signal, measured by the
(weighted) atomic norm, over a feasible domain defined by the mea-
surements. As an example, in the ULA case the feasible domain
is defined by

{
Z : ‖Z − Y ‖2F ≤ η

}
, where Y consists of sampled

data and η is an upper bound of the noise energy. Therefore, unlike
GLS the atomic norm methods require the noise level. Motivated
by the observation that GLS and the (weighted) atomic norm have
seemingly related SDP formulations, we explore their relationship
in the ensuing two sections.

Remark 1 GLS and the existing atomic norm methods are comple-
menting each other rather than competing. In particular, GLS is
preferable in the absence of the noise level or in the presence of het-
eroscedastic noise, whereas the atomic norm methods are favorite
when the noise has known bounded energy or when the sources are
highly correlated (note that GLS is derived based on the assumption
of uncorrelated sources).

3. GLS AS ATOMIC NORM METHODS: THE ULA CASE

3.1. Homoscedastic Noise and L < N

We first consider the case of homoscedastic noise where {σn} are
identical. According to [6] GLS can be simplified in this case since
R in (6) is a Toeplitz matrix itself and can be reparameterized as

R = T (u) (11)

for some u ∈ CN which is identical to the u in (6) except for the
first entry. WhenL < N the sample covariance R̃ is singular and the
criterion h1 is adopted. Therefore, the GLS minimization problem
is given by (8):

min
X,u

tr (X) + tr (T (u)) , subject to
[
X R̃

R̃ T (u)

]
≥ 0 (12)
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which exactly computes
∥∥∥R̃∥∥∥

A
(up to a scaling factor) by (9). Note

that the dimension of the problem in (12) can be reduced. Let Ỹ =

L−1Y
(
Y HY

) 1
2 ∈ CN×L. It follows that R̃

2
= Ỹ Ỹ

H
. Hence,

GLS is also equivalent to computing
∥∥∥Ỹ ∥∥∥

A
(recall (7)). Moreover,

GLS exactly computes ‖Y ‖A in the single-snapshot case where
Y HY is a scalar.

To explain why GLS can estimate the frequencies, we consider
the limiting noiseless case where Y =

∑K
k=1 a (fk) sk. Then we

have that

Ỹ =

K∑
k=1

a (fk) s̃k (13)

and s̃k = L−1sk
(
Y HY

) 1
2 . Therefore, GLS modifies the source

signals from {sk} to {s̃k} and then computes the atomic norm. Ac-
cording to [9] we conclude that GLS with a ULA estimates the fre-
quencies with infinite precision in the limiting noiseless case when
L < N if the frequencies are mutually separated by at least 4

N
(note

that the frequency separation condition is sufficient but not neces-
sary).

3.2. Homoscedastic Noise and L ≥ N

When L ≥ N the criterion h2 is adopted in GLS. By (11) and the
identity that

h2 (f ,p,σ) = tr
(
R−1R̃

)
+ tr

(
R̃
−1
R
)
− 2N (14)

the GLS minimization problem is given by

min
u

tr
(
L−1Y HT (u)−1 Y

)
+ tr

(
R̃
−1
T (u)

)
(15)

with T (u) ≥ 0. According to (10), GLS is equivalent to computing
‖Y ‖Aw up to a scaling factor, where the weighting function of the

weighted atomic norm w(f) =
(

1
N
aH (f) R̃

−1
a (f)

)− 1
2 is the

square root of Capon’s spectrum (see, e.g., [1]) which is a reasonable
choice to specify the preference of the frequencies.

3.3. Heteroscedastic Noise and L < N

In the case of heteroscedastic noise where {σn} are distinct, R is
given by (6). When L < N the GLS minimization problem is given
by

min
u,{σ�0}

tr
(
R̃R−1R̃

)
+ tr (R) , subject to T (u) ≥ 0. (16)

To relate the problem above to the atomic norm, we use the following
identity (see, e.g., [7]):

yHR−1y

= min
z
zHT (u)−1 z + (y − z)H diag (σ)−1 (y − z) .

(17)

It follows that (the constraints T (u) ≥ 0 and σ � 0 are omitted for
brevity)

(16)⇔ min
u,σ

tr
(
Ỹ
H
R−1Ỹ

)
+ tr (R)

⇔ min
u,σ,Z

tr
(
ZHT (u)−1Z

)
+

N∑
n=1

1

σn

∥∥∥(Ỹ −Z)
n

∥∥∥2

2

+ tr (T (u)) +

N∑
n=1

σn

⇔ min
Z

√
N ‖Z‖A +

∥∥∥Ỹ −Z∥∥∥
2,1
,

(18)

where
∥∥∥Ỹ −Z∥∥∥

2,1
=
∑N
n=1

∥∥∥(Ỹ −Z)
n

∥∥∥
2
. As a result, the GLS

minimization problem is interpreted as an atomic norm denoising
problem in which Ỹ consists of the modified snapshots and the `2,1
norm is used for data fitting.

3.4. Heteroscedastic Noise and L ≥ N

In this case GLS minimizes h2 in (14) and R is given by (6). Then
the GLS minimization problem is equivalent to

min
u,σ

tr
(
L−1Y HR−1Y

)
+ tr

(
R̃
−1
R
)

⇔ min
u,σ,Z

tr
(
ZHT (u)−1Z

)
+

N∑
n=1

1

σn

∥∥∥∥( 1√
L
Y −Z

)
n

∥∥∥∥2

2

+ tr
(
R̃
−1
T (u)

)
+

N∑
n=1

σn
(
R̃
−1
)
nn

⇔ min
Z

√
N ‖Z‖Aw +

N∑
n=1

√(
R̃
−1
)
nn

∥∥∥∥( 1√
L
Y −Z

)
n

∥∥∥∥
2

,

(19)

where w(f) remains the square root of Capon’s spectrum and(
R̃
−1
)
nn

is known as an estimate of σ−1
n . Therefore, GLS is

interpreted as a weighted atomic norm denoising problem. It is

worth noting that 1√
L
Y in (19) can be replaced by R̃

1
2 for reducing

the problem dimension (recall (14)). It is similar in the case of
homoscedastic noise in Section 3.2.

4. GLS AS ATOMIC NORM METHODS: THE SLA CASE

In the SLA case, we denote by Ω ⊂ {1, 2, . . . , N} the set of in-
dices of the sensors and let M be the number of sensors (cardinality
of Ω). Then only the rows of Y indexed by Ω are observed and
comprises Y Ω ∈ CM×L. It follows that Y Ω = ΓΩY , where Γ ∈
{0, 1}M×N has 1’s only at the (j,Ωj)th entry, j = 1, . . . ,M . More-
over, we let R̃Ω = 1

L
Y ΩY

H
Ω = ΓΩR̃ΓTΩ andRΩ = ΓΩRΓTΩ be

the sample covariance and the data covariance, respectively.

4.1. Homoscedastic Noise and L < M

In this case, R is given by (11) and the GLS minimization problem
based on the criterion h1 is given by

min
u

tr
(
R̃ΩR

−1
Ω R̃Ω

)
+ tr (RΩ) . (20)
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First note that tr (RΩ) = M
N

tr (T (u)). LetB = L−1Y Ω

(
Y H

ΩY Ω

) 1
2 ∈

CM×L. It follows that R̃
2

Ω = BBH . We also use the following
identity (see, e.g., [7]):

bHR−1
Ω b = min

z
zHR−1z, subject to zΩ = b. (21)

Now we are ready to show the following equivalences:

(20)⇔ min
u

tr
(
BHR−1

Ω B
)

+
M

N
tr (T (u))

⇔ min
u,Z

tr
(
ZHT (u)−1Z

)
+
M

N
tr (T (u)) ,

subject to ZΩ = B

⇔ min
Z
‖Z‖A , subject to ZΩ = B.

(22)

Therefore, the GLS minimization problem is equivalent to an
atomic norm minimization problem studied in [9]. Similarly
to the ULA case, in the limiting noiseless case we have that

B =
∑K
k=1 aΩ (fk) s̃k, where s̃k = L−1sk

(
Y H

ΩY Ω

) 1
2 . In gen-

eral, we cannot conclude as in [9] that the frequencies can be exactly

recovered by GLS since
(
Y H

ΩY Ω

) 1
2 depends on {sk} and that the

technical assumption that the signs of {s̃k} are independent does
not hold. But the conclusion indeed holds in the single-snapshot

case where
(
Y H

ΩY Ω

) 1
2 is a positive scalar. Therefore, GLS with an

SLA exactly estimates the frequencies with high probability in the
limiting noiseless case when L = 1 if M ≥ O (K lnK lnN) and
the frequencies are mutually separated by at least 4

N
.

4.2. Homoscedastic Noise and L ≥M

By (14) and (21) the GLS minimization problem is given by

min
u

tr
(
R−1

Ω R̃Ω

)
+ tr

(
R̃
−1

Ω RΩ

)
⇔ min

u

1

L
tr
(
Y H

ΩR
−1
Ω Y Ω

)
+ tr

(
R̃
−1

Ω ΓΩT (u) ΓTΩ

)
⇔ min

u,Z

1

L
tr
(
ZHT (u)−1Z

)
+ tr

(
ΓTΩR̃

−1

Ω ΓΩT (u)
)
,

subject to ZΩ = Y Ω

⇔ min
Z
‖Z‖Aw , subject to ZΩ = Y Ω,

(23)

where w(f) =
(

1
N
aH (f) ΓTΩR̃

−1

Ω ΓΩa (f)
)− 1

2
=(

1
N
aHΩ (f) R̃

−1

Ω aΩ (f)
)− 1

2 is again the square root of Capon’s
spectrum.

4.3. Heteroscedastic Noise

In the case of heteroscedastic noise we can similarly reformulate the
GLS minimization problems (when L < M and L ≥M ) as atomic
norm methods by consecutively applying (17) and (21). In particular,
when L < M the atomic norm formulation is given by

min
Z

√
M ‖Z‖A + ‖B −ZΩ‖2,1 . (24)

When L ≥M it becomes

min
Z

√
N ‖Z‖Aw +

M∑
m=1

√(
R̃
−1

Ω

)
mm

∥∥∥∥∥
(

1√
L
Y −Z

)
Ωm

∥∥∥∥∥
2

.

(25)

Note that B in (24) and w(f) in (25) are defined as in the previous
two subsections. We leave the detailed derivations to interested read-
ers. Similarly to the ULA case, Y Ω (or 1√

L
Y Ω) in (23) (or (25))

can be replaced by R̃
1
2
Ω for reducing the problem dimension.

4.4. Remarks

Remark 2 In the case of homoscedastic noise if we insist on split-
ting the signal and noise covariances in R, then GLS can be refor-
mulated as (weighted) atomic norm minimization problems similar
to those in the case of heteroscedastic noise, whereas data fitting
is measured by the Frobenious norm instead of the (weighted) `2,1
norm.

Remark 3 In the case of highly correlated sources Capon’s power
spectrum, whose square root is used in GLS as the weighting func-
tion, can be biased and hence, the GLS power estimates can be bi-
ased as well. This explains the behavior of GLS reported in [6].

5. CONCLUSION

We have shown the equivalence between GLS and atomic norm
methods in this paper. Since GLS and the existing atomic norm
methods have different pros and cons it will be of great interest in
future studies to develop new gridless sparse methods that combine
their merits, for example, being hyper-parameter free and highly
robust to source correlations.
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