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ABSTRACT
One of the fundamental issues in Wireless Sensor Networks (WSN)
is to count and localize multiple targets accurately. In this context,
there has been an increasing interest in the literature in using Com-
pressive Sensing (CS) based techniques by exploiting the sparse na-
ture of spatially distributed targets within the monitored area. How-
ever, most existing works aim to count and localize the sparse targets
utilizing a Single Measurement Vector (SMV) model. In this paper,
we consider the problem of counting and localizing multiple targets
exploiting the joint sparsity feature of a Multiple Measurement Vec-
tor (MMV) model. Furthermore, the conventional MMV formula-
tion in which the same measurement matrix is used for all sensors is
not valid any more in practical time-varying wireless environments.
To overcome this issue, we reformulate the MMV problem into a
conventional SMV in which MMVs are vectorized. Subsequently,
we propose a novel reconstruction algorithm which does not need
the prior knowledge of the sparsity level unlike the most existing
CS-based approaches. Finally, we evaluate the performance of the
proposed algorithm and demonstrate the superiority of the proposed
MMV approach over its SMV counterpart in terms of target counting
and localization accuracies.

Index Terms— Wireless sensor networks, target counting, tar-
get localization, compressive sensing.

1. INTRODUCTION

Wireless Sensor Networks (WSNs), in which several sensor nodes
equipped with sensing/actuation devices collaboratively perform a
common task, have received important attention in several appli-
cations such as environmental monitoring, intrusion detection, ro-
bust target tracking and localization, and radio environment map
construction [1]. In most of the aforementioned applications, tar-
get counting is often considered as the first step and the problem of
counting multiple targets is non-trivial since it needs to differenti-
ate and count the targets [2]. In addition, determining the physical
location of targets such as wireless transmit nodes is a fundamen-
tal requirement and a key challenge in WSN applications. In this
context, target counting and localization has been a topic of active
research in the recent years [2–5].

Compressive Sensing (CS), a signal processing technique which
can recover sparse signals utilizing far fewer samples or measure-
ments than those required by the conventional non-CS based meth-
ods [6–8], has recently received important attention in solving vari-
ous problems in WSNs in addition to its applications in several other
areas such as digital image processing, radar imaging, Cognitive Ra-
dio (CR) [9–11], etc. The application of CS in many WSN applica-
tions has been mainly motivated due to the following aspects [12]:

(i) there may be a very limited number of active sensors as com-
pared to the total number of sensors in the network, (ii) potential
targets cover a small part of the total discrete spatial domain, which
allows the localization problem to be linearized over a set of possi-
ble locations. In this context, this paper focuses on the application of
the CS principle in WSNs in order to count and localize the sparsely
distributed targets.
1) Related Work: Received Signal Strength (RSS) is one of the most
widely accepted and used parameters for localization in WSNs due
to the fact that it can be applied to almost any radio device. More-
over, it is by far the cheapest and the simplest option. Examples
of target localization by interpreting RSS can be found in [13–15].
The existing target counting and localization methods can be broadly
categorized into the following types [2]: (i) non-CS based, and (ii)
CS-based. The non-CS based target counting methods can be further
categorized into: (i) Minimalistic approach [16], (ii) Binary sensing-
based approach [17,18], and (iii) Clustering-based approach [19,20].
In the first approach, each sensor outputs the number of distinct tar-
gets within its sensing region and in the second approach, the number
of targets are estimated by assuming that a sensor reports a value 1
if one or more targets are detected within its sensing region, and 0,
otherwise. The third approach identifies multiple non-overlapping
clusters consisting of one or more targets.

In order to take advantage of the sparse nature of WSNs, recent
contributions have focussed on CS-based target counting and local-
ization [2, 4, 5, 12, 21–25]. Out of these contributions, [2, 12] have
focussed on CS-based target counting, [4, 5] has focussed on both
target counting and localization, and the rest have focussed on CS-
based localization. The contribution in [12] has proposed CS-based
Baysian detection and heuristic approaches which can reduce the
sampling rate by 25% without compromising the detection perfor-
mance. Furthermore, authors in [2] propose a novel Greedy Match-
ing Pursuit (GMP) algorithm utilizing the CS based approach for
sparse target counting and localization in WSNs and prove that the
proposed GMP algorithm can accurately recover a sparse signal with
a high probability. Besides, the contribution in [4] applies CS theory
for device-free counting and localization in order to count and lo-
calize multiple targets in sensor networks utilizing a GMP algorithm
based on the RSS measurements.

Multiple Measurement Vectors (MMV) in a CS framework
have been shown to further reduce the required number of sam-
ples [26–28], and can provide substantial improvements on the
localization accuracy given the implicit sparse representation of the
problem. Unlike SMV, the set of observations in the MMV model is
represented as a set of jointly sparse vectors, represented as a matrix,
sharing their common non-zero supports, i.e., the physical location
of the targets to be localized. In other words, all the employed
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sensors observe the targets at the same positions. This feature is also
known as joint sparsity in the general CS literature [29–31].

2) Contributions: In this paper, we focus on counting and local-
izing multiple targets using a small number of RSS measurements
collected by a few sensors in contrast to the traditional non-CS based
approach which requires a large number of sensors within the mon-
itored area [19, 20]. Most of the existing CS-based counting and lo-
calization techniques consider a Single Measurement Vectors (SMV)
model, in which the observation/measurement is processed as a vec-
tor [2, 4]. This is appropriate for WSN applications in which each
of the sensors captures a single snapshot about the positions of the
sparsely distributed targets [2, 24, 25]. However, in practice, a sen-
sor may acquire multiple snapshots either exploiting the time [28] or
the spatial diversity [32] of the problem, thus resulting in an MMV
model. Motivated by this aspect, we apply an MMV-based CS ap-
proach in order to improve the target counting and localization ac-
curacies. In particular, we extend the problem formulation presented
in [2] to the MMV case. In [2], an SMV-based problem formula-
tion was proposed together with an iterative reconstruction algorithm
which can count and localize targets without the knowledge of the
sparsity level. Here, we go a step further and consider the availability
of multiple RSS measurement vectors at each of the sensors.

However, the conventional MMV formulation in which the same
sparse snapshot is measured assuming the same measurement ma-
trix is not valid any more since the channel realization might change
from one time instant to another. Neither the joint sparsity models
proposed in [31] fit in the proposed context, in which the sparsity
is assumed to be time-varying. To overcome these issues, we re-
formulate the MMV into a conventional SMV in which the MMVs
are vectorized. Based on the algorithm proposed in [2], we propose
a novel GMP algorithm, particularly designed for the case where
MMVs are available, to recover both the physical location and the
exact number of targets present in the considered area. Unlike many
existing sparse signal recovery algorithms, the proposed algorithm
does not require the prior knowledge of the sparsity level nor any
information about the noise component of the measurements.

3) Organization: The rest of the paper is organized as follows:
Section II reviews the SMV-based target counting and localization
method presented in [2]. Section III deals with the MMV-based tar-
get counting and localization problem by providing a mathematical
formulation and the proposed GMP algorithm. Supporting simula-
tion results are presented in Section IV, and finally, concluding re-
marks are provided in Section V.

2. SMV-BASED TARGET COUNTING AND
LOCALIZATION

The goal of the proposed target counting and localization technique
is to localize and count blind wireless nodes using the measured RSS
captured at a few sensor positions. In this section, we review the
SMV-based approach for target counting and localization presented
in [2].

Let us assume the case in which the area of interest is divided
into a discrete grid with N points. Let si be the number of targets
at the i-th grid point, where si ∈ {0, 1, 2, . . . ,m}, with m denoting
the maximum number of targets that can be present in a single grid
point. Based on the point-target model, the RSS observed by a sensor

at location j is given by,

xj = P0gj,jsj +

N∑
i=1
i6=j

P0
gi,j
dαi,j

si + nj , (1)

where P0 denotes the signal strength at the i-th grid point, di,j de-
notes the distance between the i-th grid point and the j-th location,
gi,j denotes the channel coefficient, which is assumed to follow a
complex Gaussian distribution, and nj is the additive Gaussian white
noise. The decay factor is denoted by α ∈ [2, 5], whose value de-
pends on the propagation environment.

Assuming that one sensor is placed at each grid, we have N
different RSS measurements, xj , j = 1, . . . , N , which can be lexi-
cographically ordered into a column vector x =

[
x1, x2, . . . , xN

]T .
In a similar way, stacking the elements si, i = 1, . . . , N into a col-
umn vector, we can obtain the equivalent measurement model,

x = Ψs + n, (2)

with s =
[
s1, s2, . . . , sN

]T , n =
[
n1, n2, . . . , nN

]T and Ψ being
an N ×N matrix defined as,

Ψ = P0


1

g2,1
dα2,1

. . .
gN,1
dα
N,1

g1,2
dα1,2

1 . . .
gN,2
dα
N,2

...
...

. . .
...

g1,N
dα
1,N

g2,N
dα
2,N

. . . 1

 . (3)

Assuming that only k out of N grid points (k � N ) are occu-
pied by targets, then target counting and localization problem can be
reformulated as a CS problem. In particular, the k-sparse vector s
can be recovered with only M = O(k logN) sensor measurements,
where k < M � N . In other words, M arbitrary sensors can be
randomly deployed over the set of the grid center points, at most one
per grid, and their RSS measurements suffice to recover s with high
probability. Towards the objective of reducing the number of sen-
sors, consider y ∈ RM×1 consisting of elements randomly chosen
from x as follows,

y = Φx, (4)

where Φ is the measurement matrix constructed by randomly select-
ing M rows of an N × N identity matrix. Note that the element
Φ(m, j) = 1 indicates that the m-th sensor is located at the j-th
grid point.

3. MMV-BASED TARGET COUNTING AND
LOCALIZATION

In this paper, we assume the availability of MMV. In so doing, it is
expected that the proposed method will achieve better performance
compared to [2], since more information or constraints are consid-
ered in the solution. In this section, we first provide the mathemat-
ical formulation of the MMV-based localization problem. Subse-
quently, we propose a novel GMP algorithm suited for the joint spar-
sity MMV model which can count and locate the sparsely distributed
targets accurately.

3.1. Signal Model

Let us consider that each sensor is able to capture L snapshots of N
different RSS measurements at different time instants. The targets
located within the monitored area are assumed to be static during
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the sensing time and thus, the spatial sparsity profile of the target
locations is preserved. Therefore, unlike the SMV model presented
in [2], L multiple measurement vectors are available in our MMV
model, which can be expressed as,

xl = Ψls + nl, for l = 1, . . . , L. (5)

Note that the channel conditions as well as noise might change with
time but the sparse vector s remains unaltered. This scenario is dif-
ferent from the conventional MMV framework [26,27], in which the
matrix Ψ is common for each of the available measurements. As
a consequence, conventional MMV theory and conventional MMV-
based reconstruction algorithms do not apply to our problem.

For the sake of convenience, let us arrange the L measurement
vectors into a large column vector X ∈ CNL×1 as follows,

X =
[
xT1 xT2 · · · xTL

]T
. (6)

Since s is common to each of the measurement vectors, the sparse
location model can be rewritten as,

X = GS, (7)

where S ∈ RNL×1 is a vector formed by the concatenation of L
times the sparse vector s, i.e., S = s ⊗ 1L with ⊗ being the Kro-
necker product and 1L being an L-element column vector with all
its elements equal to one. Matrix G ∈ RNL×NL in (7) is given by,

G =


Ψ1 0 · · · 0
0 Ψ2 · · · 0
...

...
. . .

...
0 0 · · · ΨL

 , (8)

where the sub-index l in Ψl indicated different channel realizations
and therefore, different realizations of the Ψ matrix. Then, consid-
ering only the measurements captured at the reduced set of sensors,
we have,

Y = ΩX = AS, (9)

where Ω = Φ ⊗ IL, with IL being an L × L identity matrix, and
A = ΩG ∈ RML×NL.

3.2. Proposed Greedy Matching Pursuit Algorithm

There are many CS reconstruction algorithms available in the litera-
ture to recover the sparse scene S from the reduced set of measure-
ments Y, most of them based on l1-norm minimization [6]. How-
ever, the sparsity level k and/or general prior knowledge of the error
variance is commonly assumed to be known in most of the recovery
algorithms. Here, we proposed a novel GMP algorithm based on the
principles of the one presented in [2], which provides an estimate
of the value of k and an estimate of the locations and values of the
non-zero entries in the sparse signal s. Moreover, unlike [2], the
proposed algorithm is able to take advantages of the MMV model
and its joint sparsity feature. The proposed GMP algorithm exploit-
ing the joint sparsity of the MMV model (9) is described with detail
in Algorithm 1. Essentially, at each iteration, the algorithm selects
the grid point and the number of targets it contains that contribute
the most to the received measurements. Then its contribution is sub-
tracted off and the algorithm iterates on the residual. The algorithm
is halted when the number of targets corresponding to the selected
grid is zero, assuming that the algorithm has already identified the
correct set of grid points.

Algorithm 1 Proposed GMP Algorithm
Require: Matrix A and the measurements Y.

1: r0 ← Y → Initialization of the residual
2: Λ0 ← ∅ → Initialization of the index set
3: s← 0 → Initialization of the sparse scene
4: t← 1 → Initialization of the iteration counter.
5: repeat
6: z← 0 a M -dimensional all-zero column vector.
7: Find out i and zi (the grid i that contains zi number of tar-

gets) that most contributes to the residual r0 as follows,

λt = arg min
i=1,...,N i/∈Λt−1
zi∈{0,1,...,m}

‖rt−1 −AZ‖2

where Z = z⊗ 1L.
8: Λt = Λt−1 ∪ {λt} → Augment the index set with

the chosen atom
9: si ← zi → Update the sparse scene

10: rt ← rt−1 −AZ → Update the residual
11: t← t+ 1 → Augment the iteration counter.
12: until zi = 0
13: return s

4. NUMERICAL EVALUATION

In this section, we evaluate the performance of the proposed ap-
proach in terms of target counting error and localization error as
in [2]. A target counting error (COE) may occur either due to miss-
detection or double-counting and is defined as the ratio of the differ-
ence between the estimated number and actual number to the actual
number of targets in the following way,

COE =

∑N
j=1 | sj − ŝj |∑N

j=1 sj
, (10)

where ŝj denotes the estimated number of targets in the i-th grid.
The localization error (LOCE) is a metric that provides infor-

mation on the distance between the estimated locations and the real
locations, and is given by [2],

LOCE =

∑nmin
j=1

√(
xj − x′j

)2
+
(
yj − y′j

)2
nmin · r

, (11)

where (xn, yn), for n = 1, . . . , k ·m, denote the true locations of

the targets;
(
x
′
ñ, y

′
ñ

)
, for ñ = 1, . . . ,K, denote the estimated lo-

cations of the targets, with K being the total number of estimated
targets; nmin = min {k ·m, ñ} and r is the grid size, which is used
to normalize the localization error. The matching between estimated
locations and the real targets is performed based on the shorter dis-
tance between them.

Regarding the simulation set-up, we consider a 120m × 120m
area divided into 30×30 grid points (N = 900). The measurements
are collected fromM sensors which are randomly deployed over the
set of the grid center points. At each realization of the experiment,
we randomly select k grid points out of N and put si targets at each
selected grid. The maximum value of si is m = 3. The channel
follows a complex Gaussian distribution with a scale parameter σ =√

0.5. We set P0 = 1 and α = 2.
Figure 1(a) shows an example of true target and sensor locations,

with M = 40 and k = 5. The Signal-to-Noise Ratio (SNR) is set
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Fig. 1. Example realization with M=40, k=5 and SNR=25dB: (a) True target and sensor locations, (b) SMV-based technique [2], and (c)
Proposed approach.
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Fig. 2. Performance evaluation with respect to the sparsity level k
for SNR=15dB and SNR=25dB when M=160. L is set to 4 for the
proposed approach.

to 25dB in vector y (4) and for each of the sensing realizations in
(9). Fig. 1(b) and Fig. 1(c) depict the recovered scene when con-
sidering the SMV approach proposed in [2] and the MMV approach
proposed in this paper with L = 4, respectively. Clearly, the SMV
approach generates few false targets while the proposed approach
successfully recovers the scene. Therefore, the joint processing of
the MMV results in better localization and counting performance.

Next figures depict the comparison between the CS-based tar-
get counting and localization technique presented in [2] and the one
proposed here for 100 Monte Carlo runs. Figure 2 shows the COE
and LOCE metrics for SNR=15dB and SNR=25dB when M=160
and the sparsity level k varies from 15 to 35. Figure 2 makes evi-
dent the degradation of the both techniques when the sparsity level
k and the noise level increase. As predicted before, the proposed
approach together with the proposed GMP algorithm achieve lower
errors compared to the SMV technique proposed in [2].

Similarly, Fig. 3 presents the COE and LOCE metrics for k=10
and k=30 when SNR=25dB and the number of sensors M varies
from 40 to 160. Again, Fig. 3 demonstrates the superiority of the
proposed GMP algorithm. Moreover, it is observed that COE and
LOCE decrease as the number of sensorsM increases or the sparsity
level k decreases.

It is worth to mention that the superiority of the proposed
method with multiple measurement vectors comes at the cost of the
increased observation time. However, this is not an issue while con-
sidering a very few number of snapshots of the RSS measurements
in WSNs (note that, in the presented results, only 4 measurement
vectors were considered at each sensor).
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Fig. 3. Performance evaluation with respect to the number of sen-
sors M for k=10 and k=30 when SNR=25dB. L is set to 4 for the
proposed approach.

5. CONCLUSIONS

This paper has introduced a novel formulation for the CS-based
target counting and localization problem in WSNs considering the
availability of multiple measurement vectors. Moreover, a novel
GMP algorithm has been proposed which does not need the prior
knowledge of sparsity level unlike the most of the existing CS-based
recovery algorithms. The numerical results based on computer sim-
ulations showed the effectiveness and the superiority of the proposed
technique when compared with its SMV counterpart in terms of tar-
get counting and localization accuracies. In our future work, we
plan to extend the proposed MMV formulation for the case where
multiple measurement vectors can be acquired both in time and spa-
tial dimensions considering multiple antennas at each sensor, and
also for the case where the sparsity level changes with time.
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