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ABSTRACT 

 

In this paper, we present a new Time-Frequency approach 

for recovering sources’ contribution to two convolutive 

mixtures. The separation task is performed on two steps: 

Each mixture is clustered into Voiced/Unvoiced frames, and 

then the predominant source in each time frequency bin is 

identified through a specific weight function which is based 

on sources’ excitation characteristics extraction. We investi-

gate the performance of the proposed approach in the un-

derdetermined context using objective quality measures. 

Results for separating three and four speech sources in a live 

recorded mixture show the superiority of the proposed 

method in rejecting artifacts over existing convolutive sepa-

ration techniques. 

Index Terms— Blind Source Separation, Glottal Clo-

sure Instants, Time Delay of Arrival, Weight Function 

 

1. INTRODUCTION 

 

Recovering original sources from a set of mixed observa-

tions is the ability to relatively emphasize desired source 

from a mixture in a multi-speakers environment, like meet-

ings, conferences, and cocktail parties.  This task is named 

Blind Source Separation (BSS) [1]-[3] when assuming no 

apriori informations. It attempts to extract the original un-

known speech source signals from their mixtures using only 

observed information without knowledge about the number 

of sources or the mixing process.  

BSS can be achieved appropriately using Independent Com-

ponent Analysis (BSS/ICA) [4]-[10] which is straightfor-

ward only for determined and overdetermined instantaneous 

mixtures. However in the convolutive underdetermined 

case, Time-frequency masking [11]-[20], or Maximum a 

Posteriori (MAP) estimation [21] are widely employed. 

These approaches perform separation by exploiting sparsity 

in the Time-Frequency domain. However, their performance 

is still limited by temporal fluctuations which considerably 

introduce artifacts in the estimated speech. Some other ap-

proaches which rely on specific features’ extraction [11]-

[18], are known by their simplicity and effectiveness in the 

determined context and only under low reverberation. 

In general, BSS algorithms are always focusing on distor-

tion and interferences rejection. However, optimal perfor-

mance cannot be addressed without dealing with artifact 

suppression. 

Motivated by this shortcoming, this work presents a new 

Time-Frequency separation method dealing with 

convolutive speech mixtures. It is a two stages approach: 

firstly, observed mixture are clustered into Voiced/ Un-

voiced regions, and secondly voiced regions are classified as 

originating from the same source referring to a specific 

weight function values assuming sources’ sparseness.  This 

task is based on Glottal Closure Instants detection referring 

to sources’ Time Delay of Arrival (TDOA). This method is 

inspired from an existing Temporal and Spectral Processing 

(TSP) technique [22]. In fact, our new technique is em-

ployed on the input observed mixture instead of the tempo-

rally processed speech signal already used in TSP. As a 

result, we improve rejection of artifact or musical noise 

compared to previous method. Our approach is in line with 

TSP which is developed only for the determined context. 

However, our technique is extended to fit the underdeter-

mined context. In that sense, the proposed approach is more 

general. Moreover, the benefit of this technique is that it is 

robust against musical noise, by proving its effectiveness in 

rejecting artifact compared to the latest BSS technique. 

The reminder of this paper is organized as follows: Section 

2 provides an overview of the convolutive mixing model 

and states the problem.  Section 3 describes the proposed 

method. Section 4 explains the experimental evaluation and 

presents a discussion on the achieved results. Finally, sec-

tion 5 concludes the paper. 

 

2. CONVOLUTIVE MIXING MODEL: OVERVIEW 

AND PROBLEM STATEMENT  

 

We consider a two- microphones array in reverberant envi-

ronment where   speech sources are present.  A convolutive 

mixing model can be assumed, by which the observation at 

the    microphone    can be modeled as a summation of 

individual contribution by   involved sources. Hence, the 

convolutive mixing model is expressed as follows: 

            
    

              (1) 

Where    
   

     is the spatial image of the     source on the 

    channel. It is the contribution of the     source to the     

mixture.    denotes additive noise.  
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In a convolutive mixture, the spatial image of source is gen-

erally expressed as follows: 

    
                           (2) 

Where     , denotes mixing coefficient filter modelling the 

acoustic path from the    source signal to the     microphone 
and    is the Time Delay of Arrival (TDOA) of the    source 

signal. 

The main goal of any BSS system is to recover either the 

original signals    or their spatial images    
   

 given   mix-

ture channels. In the proposed approach, we focus on extract-

ing a set of estimated sources’ images   as follows:  

      

   
        

     

   

   
        

    
  (3) 

Where each set corresponds to each of the involved source in 

the mixture    
    

   is an estimation of the     spatial image 

source signal    
   

 at the     microphone.   is determined 

using only two microphones       , and without any prior 

guess on sources   .  

In the following, we detail the proposed case approach of 

three simultaneously speaking speech sources. 

 

3. THE PROPOSED APPROACH  

 

Our approach is based on a two-stage structure: In the first 

stage, it performs Voice/Unvoice detection and it synthesizes 

speech signal in the second stage with a weight filter. The 

rest of this section details the processing steps.  

 

3.1. Voiced/Unvoiced Clustring  

 

The microphone observations are framesized into Voiced/ 

Unvoiced frames, using a Voiced/Unvoiced Decision 

(VUD) algorithm based on pitch detection.  

The observed mixed signal is firstly frame-sized into 

blocks of 40ms overlapped by 10ms, and then subjected to a 

normalized autocorrelation [23]. Then we take the half of 

the autocorrelation of each block, as it’s just a mirror for a 

real signal. As the human pitch     is in the range [50 Hz, 

500Hz], we seek the correlation sequence over the lag range 

[2ms: 20ms]. 

Each speech frame, subjected to autocorrelation, is clus-

tered into voiced or unvoiced frames depending on two 

parameters: the first major peak      [23], and the similar-

ity behaviour     of the autocorrelation frame [24]. In a 

perfect anechoic condition, each frame is voiced when    the 

first major peak      , and its similarity behaviour    . 

However, in a practical condition each frame is considered 

as voiced only if the first major peak       , and it’s 

similarity behaviour      . We should note that these 

thresholds are chosen referring to a computed weight filter’s 

amplitude in each voiced frame under reverberant condi-

tions where             

Knowing that the extracted pitch in a voiced region can 

be produced by any involved source in a multi-speakers 

mixture, we need another feature to specify the active 

speaker in each voiced frame. This stage is performed by 

estimating a weight function which enhances predominant 

speaker from other involved sources. 

 In the next subsection, we detail the design of a weight 

function and its use to synthesize estimated spatial source’s 

image. 

 

3.2. Spatial sources images’ construction 

 

The estimation of the spatial image of each involved source 

in the observed mixture is performed without any prior 

guess about the number of involved sources. However, 

sources counting is essential in the speech sources separa-

tion task.  

In this paper our sources’ counting algorithm depends on 

sources’ Time Delay of Arrival (TDOA’s) estimation. We 

propose the use of our sparseness based TDOA estimator 

technique, which exploits the pseudo-periodicity of sources’ 

instants of significant excitation (GCI’s). We have previ-

ously shown that this technique does not need any prior 

guess and it is sufficiently confident when using it in mod-

erate reverberation [25].  Sources’ TDOA’s are determined 

from the cross-correlation function of successive frames 

from Hilbert Envelope (HE) of Linear Prediction (LP) re-

sidual all over the mixed speech. The occurred number of 

each delay is computed along the recorded mixture. The 

number of speakers is the number of superiors ‘peaks’  , and 

there TDOA’s are determined by their locations with refer-

ence to the zero time lag. Knowing that each involved 

speech source has a specific TDOA, we can exploit this 

feature de design a specific weight function to each source.  

 

3.1.1. Weight function design 

For the design of weight function, we assume the sparseness 

property of source signals [14]. Based on this assumption, it 

is likely that at most only one source is predominant in each 

time-frequency observation. 

A      order LP analysis is performed on the two ob-

served mixtures. Sources’ excitation characteristics are 

extracted from Hilbert Envelop (HE) of the Linear Predic-

tion residual (LPr) of the two observed mixtures, noting that 

using the HE of the LP residual of a signal allows more 

highlighted peaks. These peaks denote Instants of Excita-

tions of Glottal Closure (GCI’s) of different sources in-

volved in the observed mixture.   HE’s of the LP residual 

are more preprocessed by dividing the square of each sam-

ple of the HE by the moving central average of the HE com-

puted over a short window around the sample [25].   

Estimating speech source signals is based essentially on 

separating their excitation peaks. This is done by aligning 

normalized preprocessed HE’s of the LP residual of each 
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mixed speech captured by each microphone:  HE’s of LP 

residual   (n) captured by Microphone1 is kept as reference, 

and the HE’s of LP residual   (n) captured by Microphone2 

is shifted by the delay    of the     desired source. Then 

considering        the minimum of the sequence   (n) and 

  (n-    as follows: 

                                (4) 

Where                 ,         are sequences retaining 

GCI’s of   ,   , and   , respectively. 

Computing a specific weight function relies on exploiting 

GCI’s of the desired source to relatively enhance it. In fact 

we need to emphasize GCI’s of the desired source from 

GCI’s of competing sources. It is performed by computing 

the difference between        of the      desired source and 

       of the      undesired source where         
In the following, we detail the case where we want to sepa-

rate     from a convolutive mixture involving three simulta-

neously speaking speakers (       and    ). 

We proceed by computing       , and        as follows: 

                        (5) 

Where     is the difference showing GCI’s of   as positive 

peaks, and GCI’s of undesired    as negative ones. This can 

be repeated by emphasizing   from    by computing    (n) 

as follows: 

                               (6) 

A linear combination is computed to emphasize GCI’s of    

relative to that of    , and    as follows: 

                            (7) 

Since sources are overlapping (all sources are simultaneous-

ly speaking), they are inherently sparse, which means that 

some regions specific to a source are less affected by com-

peting sources. This inherent sparseness is exploited to en-

hance a desired source from competing ones by computing a 

weight function to enhance regions around GCI’s of that 

source. Thus, detected GCI’s, which are emphasized by the 

linear combination function, are exploited to compute an LP 

weight function for each speaker. It is derived at two differ-

ent levels, namely gross and fine as it’s defined in [22].  

The gross weight (     function is derived to identify de-

sired and undesired      speaker regions in a mixed signal. 

It’s computed by smoothing and normalizing the absolute 

value of        by 100 ms Hamming window then nonline-

arly mapping the smoothed sequence by a sigmoidal nonlin-

ear function.  

The fine weight       function is computed to identify 

the location of significant excitation of desired and unde-

sired sources in a mixture.         values are smoothed with 

a 2 (ms) Hamming window. GCI’s locations of the desired 

speaker are detected by convolving the positive values with 

the first order Gaussian differentiator (FOGD) [28], and 

GCI’s locations of the undesired sources are detected by 

convolving absolute of negative values with FOGD. These 

locations are smoothed by a 3ms hamming window and 

used to derive the fine weight function of the desired source 

  .  

The gross and fine weight functions are combined by a 

simple multiplication       and its sample values are used 

to synthesize the desired image source    
    from the 

convolutive mixture.  

 

3.1.2. Sources’ spatial image estimation 

The mixed speech signal is segmented into frames of 40ms 

overlapped by 10ms. Each frame is weighted by a Hamming 

window then subjected to a Discrete Fourier Transform 

(DFT) termed     .  

The pitch and harmonics indexes, termed   , are used to 

select the     indexes by examining each short spectrum of 

each frame      in the range               to pick peaks 

in the spectrum frame nearest to the    harmonics. 

A window function      for sampling magnitude of 

pitch and harmonics of each frame is computed as follows: 

                       (8) 

Where 

                
  

   
 (9) 

      
            
            

  (10) 

Each sampled spectrum speech frame is enhanced depend-

ing on the VUD and the combined weight function sample 

values      . Fig.1 details the separation algorithm steps 

for each mixed spectrum frame where       is a multipli-

cation factor [27], and        is the spectral floor [28].  

Frames, which are subjected to the separation algorithm, 

are used to synthesize estimated speech sources’ image 

using Inverse Discrete Fourier Transform (IDFT) then Over-

lap and Add approach (OLA) [29]. 

 

4. EXPERIMENTAL EVALUATION  

 

Experiments are performed on “test” live recorded datasets 

which are taken from the development data of the fifth 

community-based Signal Separation Evaluation Campaign 

(SiSEC 2015) [30]. The sampling frequency is 16 kHz. The 

time duration of all individual sources is 10s. We considered 

mixtures which four audio speech sources including unrelat-

ed male and female speech. We have taken just mixtures 

with    microphones spacing and under low reverberation 

time (          ). We note that applying the TDOA 

estimator algorithm leads to the estimated TDOA values 

perfectly matched with the true ones provided by the da-

taset. 
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Spectrum frame X(k) of 
the mixed speech 

Rp>=0.4
And

S>=0.7

Wc(k)>=0.3

Xs(k) = Af.X(k).W(k)Xs(k)=X(k).(1-W(k))Xs(k) = X(k)

 
Xs(k)>β.X(k)

Y(k) = Xs(k)Y(k)=β.X(k)

TRUEFALSE

TRUEFALSE

Unvoiced 
Frame

Voiced 
Frame

Undesired 
Speaker

Desired 
Speaker

 

Fig.1 Detailed spectral enhancement diagrams: The estimation of 

desired speaker spectrum frame from the observed mixed one 

using its corresponding combined weight function values frame. 

In order to evaluate the separation performance, commonly 

used objective metrics are used: BSS-EVAL toolkit [31], 

and PEASS toolkit [32]. The BSS-EVAL covers Signal-to-

Distortion Ratio    ), Signal-to-Interference Ratio (   ), 

Image-to-Spatial distortion Ratio (ISR) and Signal-to-

Artifact Ratio (SAR) criteria expressed in decibels (dB), as 

defined in [31]. These criteria account respectively for over-

all distortion of the target source, residual crosstalk from 

other sources, spatial distortion and artifacts. The perceptual 

correspondence of these criteria are obtained from the 

PEASS toolkit which includes the Overall Perceptual Score 

(OPS), the Target-related Perceptual Score (TPS), the Inter-

ference-related Perceptual Score (IPS), and the Artifact-

related Perceptual Score (APS) expressed in terms of a 

figure between 0 and 100. These criteria measure respective-

ly how close the separated signal is to the clean reference 

signal, how well the target is preserved in the separated 

signal compared to the reference, how much interferences 

are cancelled, and the quality of the separated signal in 

terms of having no artifacts. 

In order to evaluate our algorithm performance, we compare 

it with Nguyen’s method performance which is posted in the 

SiSEC 2015 website and reported in [33]. Nguyen’s method 

is similar to the Time-Frequency Masking approach [17] 

with a multi-band alignment permutation . 

For a general overview, results are given based on the aver-

age over all sources and the observed mixtures, then listed 

in Table.1. 

Nguyen’s method introduces artifacts in the separated 

speech. This is due to the temporal fluctuations, which caus-

es a relatively low SAR (   = 6.4 dB). However introduced 

artifacts are lower since it is expressed by a higher     = 

8.2 dB) when the Proposed Approach (PA) is used. This 

proves that PA is better than the Time-Frequency algorithm 

in rejecting artifacts. 

Table 1 Separation results for the Proposed approach (PA) and Nguyen’s 

method  in terms of SDR, SIR, SAR, ISR measured in (dB) and in terms of 

OPS, TPS, IPS, APS measured in (%) for SiSEC 2015 Live recordings 
dataset with 1m microphone spacing and 130ms reverberation time. Mix-

tures are recorded by two microphones (Mic) and involving four speech 

sources (src). 

 
These findings correlate with performances in terms of APS. 

In fact, PA is still better in rejecting artifacts since it is ex-

pressed by a higher APS. By using PA, we reach (     
      ), however we note a significant lower result per-

formed by the Time–Frequency masking technique (     
      ). Such improved artifact rejection performance 

obtained by PA is realized at the expense of significant 

introduced interference showed by low SIR. Similar results 

on trade-off between improvements in interference rejection 

(SIR) versus achieving a lower amount of artifacts (SAR) 

were noted when employing Nguyen’s method. According 

to the SDR results, the Time-Frequency masking achieves 

statistically significant better performance in comparison to 

PA. In fact, as the separated signals were not time-aligned 

with respect to the original signals, the SDR and the SIR 

scores are negative. Although PA is outperforming in reject-

ing musical noise, it may be noted that its robustness in 

rejecting distortion and interferences strongly depends on 

the used TDOA estimator. In fact, as we have shown previ-

ously [25] estimated TDOA’s are sensitive to reverberation 

and increasing number of speakers which make TDOA 

estimation ambiguous. Therefore, wrong weight function 

amplitude leads to ambiguous Voiced/Unvoiced decision. 

That’s why, we assume that distortion is essentially due to 

Time Delay estimation error.  

5. Conclusion 
 

In this paper, a two-stage approach was introduced for sepa-

rating multi-speech sources in a stereo convolutive mixture 

scenario. In the first stage, observed mixtures are framesized 

into Voiced/ Unvoiced frames and then the predominant 

source in each time frequency bin is identified through a 

specific weight function based on sources’ excitation char-

acteristics extraction. The weight function design relies on 

sources’ counting and localization by determining sources’ 

Time Delay of Arrival. It has been shown that this technique 

can enhance the quality of the estimated speech signal  by 

evaluating it over convolutive live recorded mixtures using 

objective and perceptual metrics. Results have shown that 

the proposed technique is very efficient in rejecting artifacts. 

Nevertheless, this technique is still limited by reverberant 

conditions, where the used TDOA estimator algorithm be-

comes unavailable. Therefore, more improvement needs to 

be done in practical conditions. 

SDR ISR SIR SAR

OPS TPS IPS APS

-5,7 1,6 -3,6 8,2

8,4 55,1 1,0 83,3

4,5 8,3 8,0 6,4

36,9 62,2 51,0 48,7

Method

2Mic/4src

PA

Nguyen
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