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ABSTRACT
We present a novel Fast Direct Source Localization (FDSL)
approach for acoustic isotropic sensor array applications. Un-
like previous approximate maximum likelihood (AML) ap-
proach, the proposed FDSL focuses on the phase shift caused
by time delays among sensors and obtains an analytical re-
sult without exhaustive search for all the possible locations.
Using this phase shift model, conventional phase uncertainty
problem can be solved by a light-weight linear search in the
limited phase space, which greatly reduces the computational
complexity of array processing. Theoretical analysis of the
FDSL has been proposed and compared with the Cramér Rao
Bound (CRB) of the AML approach. Simulations using real
bird call data validate the advantage of proposed method.

Index Terms— Source Localization, Sensor Array, Di-
rection of Arrival (DOA).

1. INTRODUCTION

Source localization using sensor array has been one of the key
problem in many applications such as radar, sonar, acoustic
tracking etc. [1] [2] [3]. For the past few decades, a wide
variety of source localization algorithms have been proposed
[4].

For low-cost embedded systems, reducing the complexity
of array processing is the key to near real-time localization
updating. For the AML [5] [6] approach, normal 2D exhaus-
tive search needs to cover all the possible locations via many
iterations. Similarly, although the result of sparsity signal re-
construction (SSR) [7] can be obtained in one step, the large
number of variables (number of grid) in sparse reconstruction
require much computational resource. In summary, the reason
for exhaustive search and sparse signal reconstruction is that
the location parameters are hidden in the complex exponential
part of the array data spectrum. Thus the 2π periodicity makes
it difficult to find the unique connection from complex array
data spectrum to location parameters (which can be called the
ambiguity problem in array processing).

In this paper, we focus on the phase shift among sensor
nodes rather than the complex exponential values of phase
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shifts and find an analytical solution for source location esti-
mation problem. We call this approach a Fast Direct Source
Localization (FDSL) estimation. Using the FDSL approach,
the source localization is formulated as a matrix calculation.
The array geometry information helps to transform the ex-
haustive search and optimization search to lighted-weight lin-
ear search in limited phase space. The main contributions are:
1) A novel Fast Direct Source Localization (FDSL) estima-
tion scheme is proposed, which provides analytical solutions
with greatly reduced complexity;
2) The error covariance of the FDSL is provided and com-
pared with the Cramer Rao Bound of the traditional AML
approach;
3) Simulation using real data validates the feasibility of our
approach and shows its superior performance.

This paper is organized as follows. In Section 2, the ar-
ray signal model and conventional array processing are intro-
duced. Then the problem formulation of the FDSL is explored
in Section 3. In section 4, we provide some theoretic analy-
sis of the FDSL approach. In Section 5, we provide some
simulation results that show the advantages of the proposed
algorithm. Finally, we conclude our work in Section 6.

2. ARRAY SIGNAL MODEL AND PROCESSING

2.1. Array Signal Model

Consider a source localization system withH isotropic sensor
arrays [8] and each sensor array is equipped with M omni-
directional microphones collecting signals from one source
in the far field. The data received by the mth microphone of
the hth array is given by

xhm(t) = sh (t−τhm(rs))+nhm(t), t = 0, . . . , N−1, (1)

in which sh(t) is a wideband signal of the source in the cen-
troid of the hth array, τhm(rs) is the time delay of the source
between the mth sensor and the centriod of the hth array, rs
is the position of the source, nhm(t) is the zero-mean white
Gaussian noise with variance σ2, and N is the number of sig-
nal samples. For simplification, we denote (h,m)th as the
mth sensor of the hth array.
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We assume that the position of the (h,m)th sensor in the
Cartesian coordinate system is rhm = [xhm, yhm]T and the
array centroid is [0, 0]T , the corresponding time delay of one
source between the (h,m)th sensor and the array centroid is
given by

τhm =
1

c
rThmah, (2)

where c is the propagation speed of acoustic signal, ah =
(rs − rh) / ‖rs − rh‖ is defined as the unit vector of the
source observed in the hth array. After dividing the time
domain signal into multiple frames and employing the Dis-
crete Fourier Transform (DFT) on each frame, the array data
spectrum Xh(k) = [Xh1(k), Xh2(k), · · · , XhM (k)]T in the
hth array at frequency fk can be given by

Xh(k) = sh(k)dh(r, k) + nh(k), k = 0, . . . , N/2− 1. (3)

where dh(k)=
[
e(−jωkτh1), e(−jωkτh2), · · · , e(−jωkτhM )

]T
is

the steering vector of the source, sh(k) is the corresponding
source spectrum, and nh(k) is the gaussian white noise.

2.2. AML Array Processing

The AML approach calculates the likelihood function J (r)
over all the possible locations, then returns the most likely
location. After ignoring some irrelevant constant terms, the
maximum likelihood estimation of the source location is giv-
en by

max
r
J (r) = min

r

K∑
k=1

H∑
h=1

||Xh(k)− dh(r, k)Sh(k)||2, (4)

where K is the number of active frequencies that are chosen
for array processing. Consider the brute-force search of the
AML algorithm, the complexity of the AML algorithm is de-
termined by size of angle search space.

3. FAST SOURCE LOCALZATION

3.1. Problem Formulation

Recall Eq.(2), the phase shift between the (h,m)th sensor and
the array centroid at frequency fk is

P
(k)
hmc = 2πfkτhm =

2πfk
c

rThma
(k)
h . (5)

Then the phase shifts vector P
(k)
hc = [Ph1c(k), · · · , PhMc(k)]

of the hth array is given by

P
(k)
hc =

2πfk
c

Rha
(k)
h , (6)

in whichRh = [rh1, rh2, . . . , rhM ]T is the array position ma-
trix. We assume all the H isotropic arrays have the same ge-
ometry in their own coordinate systems (R1 = · · · = RH =

R, RTR = κI). The unit vector can be obtained by

a
(k)
h =

c

2πfk

(
RT
hRh

)−1
RT
hP

(k)
hc =

c

2πκfk
RT
hP

(k)
hc . (7)

Based on the unit vector ofH sensors, the triangulation based
source localization is:

ys − yh
xs − xh

=
a
(k)
h (2)

a
(k)
h (1)

, h = 1, 2, ...,H, (8)

or in matrix format:

A(k)rs = F(k), (9)

where A(k) = [a1,a2, · · · ,aH ]
T

T, F(k) = [a1Tr1,a1Tr2
, · · · ,a1TrH ]

T , ah =
∑K
k=1 ωka

(k)
h /

∑K
k=1 ωk, ωk is the

summation weight of different frequency and T =
[

0
−1

1
0

]
is

a steering vector that rearranges ah. Then the least square
solution is

rs = (U)
−1

V, (10)

where U=T
∑H
h=1 aha

T
hTT , V=

∑H
h=1

(
Taha

T
hTT rh

)
.

3.2. Phase Measurement and Uncertainty

The 2π periodicity of exp(−jωkτhm) makes it difficult to find
the right τhm from the cross spectralXhm(k)X∗h0(k) between
the (h,m)th sensor and the hth array centroid. To solve this
issue, a fast phase search approach is proposed that finds the
right phase shift from the array data spectrum. In this paper,
only single source localization is considered. However, this
FDSL approach also works for multiple sources case when
the orthogonal projection technology [5] is introduced. To
clarify the heart of the fast phase search approach, we only
focus on the single source case in this paper.

3.2.1. Phase Measurement

Recall Eq. (5), P (k)
hmc is defined as the phase difference be-

tween the (h,m)th sensor and the array centroid at frequency
fk. In this section, we only focus on single sensor array, thus
the index h is ignored in all notations. Consider allM sensors
of an array, the phase shift vector is

P(k)
c =

[
P

(k)
1c , P

(k)
2c , · · · , P

(k)
Mc

]T
. (11)

The array data spectrum in Eq. 3 is consistent with the steer-
ing vector, so the observed phase shift P (k)

mc between the mth
and the array centroid can be given by

P̃ (k)
mc = atan2 (Im(Xhm(k)X∗h0(k)),Re(Xhm(k)X∗h0(k))) ,

(12)
where atan2(b, a) calculates the angle of a + ib. Because
of the 2π periodicity of atan2(b, a), the real phase shift P (k)

mc

and the observed phase shift P̃ (k)
mc satisfy

P (k)
mc = P̃ (k)

mc + 2πIk, (13)

3212



where Ik is an unknown integer number. On condition that
the array centroid is not equipped with a sensor, the equivalent
P

(k)
c can be obtained by

P(k)
c =

(
I− 1M×M

M

)
P(k)
m , (14)

where P
(k)
m = [P1m(k), P2m(k), · · · , PMm(k)] is the phase

shift vector with respect to the mth sensor. This is because∑M
m=1 P

(k)
mc = 2πfk/c

∑M
m=1 rTma(k) = 0.

3.2.2. Phase Search Formulation

Fig. 1. (a) Phase search of low frequency, (b) Phase search of
high frequency

Based on the observed phase shift, the uncertainty of the
real phase shift in Eq. 13 should be solved. Fig. 1 shows the
uncertainty of phase shift, suppose the largest distance D is
smaller than the wavelength (as shown in Fig.1.a), then the
corresponding phase shift should be smaller than 2π. This
condition is equivalent to fk ≤ c

D = fLow. Frequencies less
than fLow have smaller phase shifts than 2π.

In this case, the possible alternative phase shifts between
the nth and the mth sensors are

P (k)
nm =

{
P̃

(k)
nm

P̃
(k)
nm − 2πsign(P̃

(k)
nm)

. (15)

Consider each P
(k)
mn has 2 alternatives, the total alternative

number of P
(k)
m is 2M−1. We further divide this 2M−1 alter-

natives intoM cases, in which each sensor is assumed to be n-
earest to the source and has the smallest phase. If themth sen-
sor has the smallest phase, P (k)

nm(n = 1, 2, · · · ,M, n 6= m)
should only be positive and the negative one can be excluded
from Eq. 15. Since each case has only one possible P

(k)
m , the

total number of of all the M cases can be reduced to

P
(k)
m = P̃

(k)
m + πsign(P̃

(k)
m )

(
sign(P̃

(k)
m )− 1

)
,

m = 1, 2, · · · ,M.
(16)

Fig.1.b is the high frequency cases of fk ≥ fLow , the
maximum phase shift is 2π dDfk/ce. This means the alterna-
tive number of P (k)

nm becomes Lk = dDfk/ce. In this case,

we need to extend the phase search space from 2π to 2πLk,
and the total number of possible P

(k)
m is MLM−1k .

3.3. Solution for Phase Uncertainty

Given the pruned possible phase shift vectors, we need to find
the right one among them. Based on the the unit norm defini-
tion of a(k), the right phase shift should satisfy(

P(k)
c

)T
P(k)
c =

4π2f2kκ

c2
. (17)

This norm constraints of P
(k)
c can be used as a criterion that

tests the validation of all the possible phase shifts and finds
the right one.

4. PERFORMANCE ANALYSIS

To evaluate a source localization method, criteria such as er-
ror covariance and CRB are used. In this section, the error
covariance of our FDSL is provided and compared with the
CRB of the AML approach.

Recall Eq. (10), the error of rs can be approximated by

∆rs =
∂rs
∂aT

∆a, (18)

where ∂rs
∂aT =

[
∂rs
∂aT

1
, ∂rs
∂aT

2
, · · · , ∂rs

∂aT
H

]
, ∂rs
∂aT

h

=
[
∂rs
∂a(1) ,

∂rs
∂a(2)

]
,

∆a =
[
∆aT1 ,∆aT2 , · · · ,∆aTH

]T
.

Assume the 1st sensor of the hth array has the smallest
phase, the error of P

(k)
hc can be given by

∆P
(k)
hc =

(
I− 1

M

)[
0 0T 0 0T

E1 E2 E3 E4

][
∆Re(Nh(k))
∆Im(Nh(k))

]
.

(19)
E1 = [ε12,1, ε

1
3,1, · · · , ε1M,1]T , E2 =diag(ε22,1,· · ·, εMM,1),

E3 = [v12,1, v
1
3,1, · · · , v1M,1]T , E4 =diag(v22,1,· · ·, vMM,1),

ε1m,1 = Im(X1(k))

|X1(k)|2
, v1m,1 = −Re(X1(k))

|X1(k)|2
,

εmm,1 = −Im(Xm(k))

|Xm(k)|2 , vmm.1 = Re(Xm(k))

|Xm(k)|2 .

(20)
Here ε1m,1, v1m,1, εmm,1 and vmm,1 are the partial deriva-

tives of P (k)
m1 to Re(X1(k)), Im(X1(k)), Re(Xm(k)) and

Im(Xm(k)) respectively.
After some derivations, the covariance of ∆P

(k)
hc and

∆a
(k)
h are

E(∆P
(k)
ch ∆

(
P

(k)
ch

)T
) = σ2

2S2
hk

(I + 1M×M ) ,

E(∆a
(k)
h ∆

(
a
(k)
h

)T
) = Nc2σ2

8κπ2
I

f2
kS

2
hk
.

(21)

Observe that the error covariance of ∆a
(k)
h is proportional

to 1/f2kS
2
hk, frequency with larger f2kS

2
hk has small error co-

variance. If we assign wk = f2kS
2
hk to each frequency when
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calculating the mean value of different a
(k)
h , the weighted

summation of a
(k)
h can be given by

∆ah =

K∑
k=1

wk∆a
(k)
h /

K∑
k=1

wk. (22)

Assume the noise nh(k) at different frequency is independen-
t, the error covariance of ∆ah is

∆ah∆aTh =

(
Nc2σ2

8π2κ

)
1

µh
, (23)

where µh =
K∑
k=1

f2kS
2
hk. Recall Eq. (10), the partial deriva-

tion of rs is given by

∂rs
∂ah(1)

= −U−1 ∂U
∂ah(1)

U−1V + U−1 ∂V
∂ah(1)

= −U−1zh1 (∆rh) ,
(24)

in which zh1 = T
(
ahe1

T + e1a
T
h

)
TT , e1 = [1, 0]T ,

∆rh = (rs − rh). Combine Eqs. (18-23), the covariance
of ∆rs is

∆rs∆rTs = −U−1
H∑
h=1

∂rs
∂aT

h

∆ah∆aTh
∂rTs
∂aT

h

U−1

= Nc2σ2

8κπ2 U−1
H∑
h=1

αh

µh
U−1,

(25)

in which αh = zh∆rh∆rTh zTh . After some simple calcula-
tions, the error covariance of rs is

COV(rs) =
Nc2σ2

8κπ2
U−1

H∑
h=1

T∆rh∆rThT

µh
U−1. (26)

For comparison, the CRB [9] of source localization is

CRB(rs) =
Nσ2c2

8κπ2

(
T

K∑
k=1

f2k

H∑
h=1

S2
hk

∆rh∆rTh
|∆rh|4

TT

)−1
.

(27)

5. SIMULATION RESULTS

In this section, simulations are carried out to validate our FD-
SL approach. Four circular arrays with diameter 7.5cm are
implemented at [−120,−120]m, [−120, 120]m, [120,−120]m,
[120, 120]m, and a real bird call of Bewick’s Wren (BEWR)
is used as source signal in simulations.

Fig. 2 shows the comparison between the CRB of AML
approach and the COV of the proposed FDSL approach. The
SNR=10dB and 20 snapshots are used for each source local-
ization estimation. The COV of the FDSL approach is 37%
higher than the CRB of the AML approach on average, but it
is still within an acceptable range.

Fig. 2. Comparison between CRB and COV

Fig. 3. Comparison among CRB, COV and the RMSEs of
AML and FDSL

Further simulations are conducted to compare the CRB
and COV values with the RMSEs of the AML and the FD-
SL approaches. Both methods approach their theoretical per-
formance limits with increasing SNR. Although the FDSL
has 37% performance degradation with respect to the AM-
L, the processing time of the FDSL is only 3% of the AML
approach. Consider both the computational complexity and
accuracy, the FDSL approach shows its superiority compared
to the AML approach.

6. CONCLUSION

In this paper, a novel FDSL estimation approach is proposed.
The source localization problem is considered from an alter-
native perspective of phase calculation. Thus, traditional ex-
haustive search based AML approach can be replaced by a
light weight linear search problem. Also the array geometry
information is used to solve the phase uncertainty problem.
Simulation using experiment data validates the feasibility of
the FDSL approach and shows its superiority over the AML
approach.
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