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ABSTRACT

A method is proposed for the estimation of the time dif-
ference of arrival (TDOA) from a sound source to a pair
of microphones. Given noisy observations of the source,
the magnitude spectrum of the source is first estimated via
smoothing across time frames. Then, a probability density
function (PDF) for the phase conditioned upon the magnitude
is constructed based on the signal-to-noise ratio (SNR) at
every frequency. Subsequently, the conditional PDF for the
inter-channel phase difference (IPD) is calculated, and the
computation can be accelerated via Gaussian curve fitting.
Finally, by combining the information from all frequencies,
the TDOA can be estimated in the maximum a posteriori
(MAP) sense. Results from “anechoic” simulation showed
that, at various SNRs (0 to 40 dB), the proposed method
consistently produced more accurate estimation than the well
known GCC-PHAT [1] and a recent method that was also
based on IPD modeling [2]. Experiments conducted in an of-
fice environment are also reported, using speech and footsteps
as test materials.

Index Terms— spectral estimation, time difference of ar-
rival, multichannel audio processing

1. INTRODUCTION

With the advent of Internet of Things, there has been much
discussion on connecting microphones to the networks for
sound detection, enhancement, and localization. Sound lo-
calization in particular, could be achieved via estimation of
the time differences of arrival (TDOA) from sources to micro-
phones [3]. Many methods for TDOA estimation are based on
peak finding from generalized cross-correlation (GCC) func-
tions [1]. GCC, when correctly weighted, leads to maximum-
likelihood (ML) estimation of TDOA [4], but its effective-
ness for audio signals might be compromised — the ML im-
plementation of GCC requires a priori and complete knowl-
edge of the cross spectrum, but audio signals are generally
non-stationary. Alternatively, some methods achieve sound
localization via decomposition of multi-channel (array) sig-
nals into signal and noise subspaces. Multiple signal classi-
fication (MUSIC)[5], a well-known and powerful method of
this kind, has enabled simultaneous direction-of-arrival esti-

mation for multiple sources. However, the cost involved in
high dimensional eigenspace decomposition might hinder its
deployment to sensor networks when computing resource is
limited.

Therefore, interest in conducting TDOA estimation for
microphone pairs (e.g., [2, 6, 7, 8, 9]) has resurfaced with a
set of new constraints and goals. First, the computation needs
to be efficient; secondly, information extracted from micro-
phone pairs pertaining the TDOA should be easy to integrate;
finally, the method needs to adapt to the environment as sig-
nal and noise statistics are constantly changing. Toward these
goals we aimed to “re-invent” TDOA estimation by calculat-
ing, at least approximately, the probability density function
(PDF) of the time difference variable given the observed sig-
nals. We envision that such PDFs, collected from distributed
microphone pairs in a network, can be combined for network-
based sound enhancement and sound localization in a robust
manner.

The proposed algorithm turns out to be most akin to the
method in [2], which uses power-weighted histogram to in-
fer the TDOA without explicitly deriving the PDF. Detailed
comparison of the performance is reported, and the rest of
this paper is organized as follows: Section 2 describes the
methods, Section 3 reports on the results, and discussions and
conclusion follow in Section 4.

2. METHODS

Described in this section is a TDOA estimation method which
extracts information from the phase difference between the
right and the left channel. The proposed algorithm is based
upon a probabilistic model for noise. The noise model in-
duces a probability distribution of TDOA, whose Gaussian
approximation enables fast implementation.

2.1. Probabilistic modeling of TDOA

Considering audio signal interfered by additive white Gaus-
sian noise in the time domain, the signal y[n] received by a
microphone can be described as follows,

y[n] = x[n] + u[n], (1)

3206978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



where x[n] stands for the original signal and u[n] ∼ N (0, σ2)
denotes the white Gaussian noise with zero mean and a vari-
ance of σ2.

For a single frame of lengthN , denote the discrete Fourier
transform (DFT) of y[n], x[n], and u[n] as Y [k], X[k] and
U [k], respectively. In particular, we have

U [k] =

N−1∑
n=0

u[n]e−jk
2π
N n = Ur[k] + jUi[k], (2)

where Ur and Ui denote the real and the imaginary parts of
U , respectively. Since u[n] is assumed to be Gaussian and
independent and identically distributed (i.i.d.), it is straight-
forward to show that Ur[k] and Ui[k] are Gaussian and uncor-
related, and their variance is

Var(Ui[k]) = Var(Ur[k]) =
Nσ2

2
,∀k = 1, 2, ..., N − 1.

Therefore, the joint PDF of Ur[k] and Ui[k] is given as fol-
lows,

p(Ur[k], Ui[k]) = pUr (Ur[k]) · pUi(Ui[k])

=
1

πNσ2
exp

{
−U

2
r [k] + U2

i [k]

Nσ2

}
.

Denote the magnitude and phase of X[k] as RX = |X| and
θX = ∠X , respectively; similarly, define θY = ∠Y (here-
after, the frequency index k is omitted to simplify the pre-
sentation). To change the coordinates between (Ur, Ui) and
(RX , θX), we have[

Ur
Ui

]
=

[
|Y | cos θY −RX cos θX
|Y | sin θY −RX sin θX

]
, (3)

where |Y | and θY are known but RX and θX are treated as
random variables. Thus, the Jacobian matrix for the transfor-
mation is

J =

[
∂Ur
∂RX

∂Ur
∂θX

∂Ui
∂RX

∂Ui
∂θX

]
=

[
− cos θX RX sin θX
− sin θX −RX cos θX

]
.

(4)

Then, the joint PDF of (RX , θX) is

pX(RX , θX) = |det(J)| · p(Ur, Ui)

=
RX
πNσ2

exp
{
−U

2
r + U2

i

Nσ2

}
=

RX
πNσ2

·

exp

{
−|Y |

2 +R2
X − 2|Y |RX cos(∆θ)

Nσ2

}
,

where ∆θ = θY − θX . To model the phase θX , the following
estimation for RX is made first,

R̂X,m[k] =
1

M

M−1∑
i=0

|Ym−i[k]| , (5)
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Fig. 1. Comparison of q(θ) and qIPD(θ) and their Gaussian ap-
proximations. The upper panels show examples of q(θ), the
PDF of the channel phase at a frequency, and the lower panels
show examples of qIPD(θ) when information from both chan-
nels is combined. The solid lines mark the “accurate” value of
the PDFs as defined by Eqs. (6) and (7) and the dashed lines
mark the Gaussian approximation. Two panels on the left are
simulated at 35 dB SNR and the two on the right at 7 dB.

where m denote the index for the present frame, so Ym−i de-
notes the DFT of y[n] for the ith frame preceding the present
frame. Eq. (5) is based on the assumption that x[n] is quasi-
stationary so |Xm[k]| does not vary much for M successive
frames. Therefore, if the SNR is sufficiently high, |X[k]|
can be estimated by averaging |Y [k]|. Now, replacing RX
in pX(RX , θX) by R̂X,m in Eq. (5), we obtain the following
conditional PDF,

q(θX)
∆
= p
(
θX
∣∣RX = R̂X,m

)
=

p(R̂X,m, θX)∫ π
−π p(R̂X,m, θX)dθX

=
1

C
exp

{
2|Y |R̂X,m cos(θY − θX)

Nσ2

}
, (6)

where C is a constant so that
∫ π
−π q(θ)dθ = 1.

Next, the conditional PDF in Eq. (6) can be obtained for
both the left and the right channels, given their respective es-
timates of RX using Eq. (5) and their respective noise level
σ2. Denoting the results as qL

(
θ

(L)
X

)
and qR

(
θ

(R)
X

)
respec-

tively, and define the inter-channel phase difference (IPD) as
φ = θ

(L)
X − θ(R)

X . Assuming that the noise signals received

3207



by both channels are independent, the PDF for φ conditioned
upon the estimates of RX for both channels can be calculated
as follows,

qIPD(φ) =

∫ 2π

0

qL(θ) · qR(θ − φ)dθ. (7)

Hence, the PDF for the TDOA, conditioned upon the esti-
mates of R̂X for both channels and across all frequencies,
can be written as follows,

pTDOA(τ) =

N/2−1∏
k=1

qIPD,k
(
2πkfsτ/N mod 2π

)
. (8)

where the notation qIPD,k emphasizes that it varies against the
frequency index k, and fs denotes the sampling frequency.
If the distance dmic between two microphones is known, the
TDOA should fall inside [−dmic

c ,
dmic
c ], where c denotes the

speed of sound. Hence, an estimate of the TDOA can be ob-
tained by maximizing Eq. (8); that is,

τ̂
∆
= arg max

τ∈[− dmic
c ,

dmic
c ]
pTDOA(τ). (9)

2.2. Simplification via Gaussian approximation

The estimate of TDOA can in principle be calculated as de-
scribed previously, but the computation cost is high because
the integral in Eq. (7) does not have a closed form. In this
section, the computation is simplified via Gaussian approxi-
mation. First, note that in Eq. (6), the peak always occurs at
θX = θY , and the following equation also always holds,

q(θY )

q(θY − π
2 )

= exp
(2|Y |R̂X,m

Nσ2

)
. (10)

Therefore, we can fit a Gaussian curve to approximate q(θX);
the curve would represent the PDF of a Gaussian random vari-
able θ̃X ∼ N (θY , σ

2
appr), where

σappr =
π

2

√
Nσ2

2|Y |R̂X,m
. (11)

Thus, two Gaussian random variables θ̃(L)
X and θ̃(R)

X can be
constructed for both channels respectively. Consequently,
φ̃ = θ̃

(L)
X − θ̃

(R)
X would also be Gaussian, with mean

µ = θ
(L)
Y − θ(R)

Y and a variance of σ2
tot = σ2

appr,L + σ2
appr,R.

Therefore, an approximation to Eq. (7) is obtained,

qIPD(φ) ≈ 1√
2πσ2

tot

exp

{
− (φ− µ)2

2σ2
tot

}
. (12)

Eq. (12) can be substituted into Eq. (8), so an estimation of τ
is obtained with a reduced computational load.

Figure 1 shows a few examples of q(θ), qIPD(θ), and their
Gaussian approximation at various SNRs for comparison.
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Fig. 2. Bias and standard deviation of three TDOA estimators
at different levels of SNR. Statistics were obtained by averag-
ing across 1100 frames.

3. SIMULATION AND EXPERIMENT

The performance of the proposed method was evaluated and
compared against Fujii et al’s histogram-based method [2]
and the well-known GCC-PHAT [1]. The following param-
eters were used for simulation and experiments: dmic = 11
cm, c = 348 m/s, the length of FFT = 2048, and fs = 44.1
kHz. The number of frames for smoothing in Eq. (5) was
M = 10. The test materials included (a) an adagio music
played by a string ensemble and a female vocal, (b) news-
reporting speech produced by a female native speaker of En-
glish, and (c) footsteps recorded in the authors’ laboratory.
Electret microphones (Horn Audio, Shenzhen, China), unidi-
rectional (0 − 180 degree) and with a sensitivity of −42 ± 3
dB (relative to 1V/Pa), were used in the experiments.

3.1. Simulation

In a simulation, the adagio music was used as the source, and
the TDOA was set at = −3 samples or −0.068 ms. White
Gaussian noise was injected to the signal in a controlled man-
ner at various SNRs. Figure 2 compares the estimation per-
formance achieved by the three methods. Though not al-
ways significantly, the proposed method outperformed both
the power-weighted histogram method (Hist+PW) [2] and the
GCC-PHAT at all SNRs.

3.2. Experiments

A pair of microphones were set up to record sounds in an
office environment. In one experiment, a loudspeaker was
placed in front of the microphones at distances of 6.25 cm
and 6.95 cm, respectively. The female speech signal was
played back from the loudspeaker, so the true TDOA be-
tween the microphones should have been approximately
0.7cm/348(m/s) = 0.20 ms. The signals received by the
microphones were amplified by a custom-made circuit using
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Fig. 3. TDOA estimation for a non-moving speech source.

the LM386 IC [10] before digitally sampled. A short period
of silence was left at the beginning of the source signal for
the purpose of estimating the noise level σ2. Fig. 3 shows
the results of TDOA estimation. In Fig. 3(a), the brightness
represents the value of pTDOA(τ) calculated in Eq. (8). Pos-
sibly because the loudspeaker was placed pretty close to the
microphones and hence the SNR was sufficiently high, the
proposed method performed well throughout the duration of
the test. For this experiment, the results of TDOA estimation
by all three estimators are shown in Fig. 3(b).

In another experiment, we used real footsteps in the lab
as the source signal to test the TDOA estimators. Fig. 4(a)
depicts the floor-plan of the space; the lab was partitioned in
the middle, and the microphones were placed on a desk near
the middle of the room. The path the person took while walk-
ing around the office is marked with the numbers indicating
the time (in seconds) when the person reached a particular
location. The size of the space was about 6.7× 7.0 m2.

Fig. 4(b) and (c) show the results of TDOA estimation.
The estimated TDOA clearly correlates to the direction of
sound arrival, except during t = 17 to 27 sec when the direct
paths from the footstep to the microphones were blocked by
the partition. Nevertheless, when direct paths were cleared,
the proposed algorithm appeared to perform better in the
sense that its results had fewer outliers than GCC (marked
with ◦) and Hist+PW (marked with +). However, many of
the outliers might be due to the footsteps being intermittent;
sometimes, the source signal was just silent.

4. CONCLUSION

In this work, we proposed a new method for estimating the
TDOA from signals received by a pair of microphones. Sim-
ulation showed that, the proposed method outperforms an ex-
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(c) TDOA estimated by three methods.

Fig. 4. TDOA estimation for footsteps. Same legends as in
Fig. 3(b).

isting IPD estimation method [2] and the well-known GCC-
PHAT at all levels of SNR. The performance is improved
largely due to the present method’s capability to adjust the
probabilistic model based on dynamic estimation of the sig-
nal level and the noise floor. However, this relies on the as-
sumption that the amplitude of the signal does not change in
a short period of time, and the appropriate time course may
be difficult to determine. It surely depends on the character-
istics of the signals of interest. The effectiveness can thus be
improved if a more accurate signal model is available.

For indoor applications, reverberation is also an impor-
tant issue to address in the future. In our “footstep” exper-
iment, the reverberation characteristics might have been just
like noise since the office was filled with a lot of furnitures.
The reverberation did not affect our experiment much, but
should be investigated further to make the method more ro-
bust.

Finally, the value of the present method is not only to pro-
vide an estimate of the TDOA, but also an estimate of its PDF.
Under a networked configuration, such PDFs can be trans-
formed and combined across sensor nodes, in a manner simi-
lar to [7], to achieve sound source localization in a collabora-
tive manner. Future work along this direction is warranted.
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