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ABSTRACT
Estimation of Time Difference of Arrivals (TDOAs) cor-
responding to early room reflections can be formulated as
a Blind Channel Identification (BCI) problem, exploiting
signals acquired by a set of microphones, given an unknown
transmitted source. To cope with the intrinsic noise sensi-
tivity and ill-posedness of the problem, sparsity and non-
negativity priors on the Acoustic Impulse Response (AIR) of
the room can be exploited. Here we propose a novel iterative
method, resulting in a sequence of convex problems relying
on a weighted l1 constraint. The proposed method allows to
outperform current state of the art on speech and non-speech
real signals, while lowering the number of parameters to tune
and the sensitivity of solution given the few free parameters.

Index Terms— Acoustic Impulse Response, Blind Chan-
nel Identification, Sparsity, Non-negative Priors, TDOA Es-
timation

I. INTRODUCTION
The robust inference of TDOAs in a room is a funda-

mental step in several audio processing applications, such
as room aware sound reproduction [1], inference of room
geometry [2], [3], [4], [5], [6], speech enhancement [7] and
dereverberation [8], [9]. A common setup is given by a set
of microphones deployed in the room and a audio source,
whose transmitted signal is typically unknown (natural sig-
nals). Baseline methods based on cross-correlation among
acquired signals are poorly performing, especially with noisy
environments, transmitted signals of limited bandwidth and
low energy reflections with respect to the direct path [10].
An attractive alternative consists in blindly estimating the
room AIRs and extracting TDOAs from the AIRs peaks.
This approach results in a Single Input Multi Output (SIMO)
blind channel identification problem that can be solved by
exploiting the spatial diversity of channels related to each
microphone couple [11].

Following works [12], [13], [14], [15] have exploited
prior knowledge on the AIRs in order to relax the strict
feasibility conditions of [11] and provide more robustness
toward environmental noise. In this paper we propose a novel
iterative optimization strategy aimed at further improving the

accuracy and robustness of AIR estimation. The key features
of our method are the elimination of strong constraints
leading to biased solutions (e.g. the anchor constraint [12],
[13]), the reduction of free parameters that ease the tuning
of the method, and the ability to promote sparsity and non-
negativity to increase robustness and accuracy. Moreover,
each iteration of the proposed method results in a convex
problem that can be easily solved with quadratic program-
ming techniques. The experimental tests based on synthetic
and real acoustic signals (both speech and non-speech) com-
pare favourably to our approach, always achieving superior
performance in respect to the state of the art.

The next section formalises the AIR estimation problem
together with previous approaches contributions. Sec. III de-
scribes our method formalisation and optimization strategy.
Experimental results in Sec. IV show the performance of
several methods compared to ours while in Sec. V some
conclusions are drawn.

II. PROBLEM STATEMENT
Let us consider N microphones in a room and let us

define hn(k) as the discrete time AIR from a source to the
n-th microphone. The signal yn(k) received at microphone
n can be written as the discrete convolution between the
transmitted signal x(k) and the n-th AIR:

yn(k) = hn(k) ∗ x(k) + νn(k), n = 1, . . . , N (1)

where νn(k) is an additive noise term. The BCI problem
aims at recovering the set of AIRs hn(k) without knowing
the transmitted signal x(k). A family of methods is based
on the cross-relation identity for which, in absence of noise,
the equality yn(k)∗hm(k) = ym(k)∗hn(k) holds for every
couple (n,m). This principle is used in [11] by introducing
a Least Squares minimization of the squared cross relation
error as:

min
h

∑
m6=n

‖Ynhm − Ymhn‖22 s.t. ‖h‖2 = 1, (2)

where hn = [hn(1), · · · , hn(L)]> and h = [h>1 , . . .h
>
N ]>.

The matrix Yn is Toeplitz with first row and column given by
[yn(k−K+1), yn(k−K), . . . , yn(k−K−L+2)] and [yn(k−
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K + 1), yn(k −K + 2), . . . , yn(k), 0, . . . , 0]
> respectively,

with K and L being the signal length and channel length
respectively, and . The equality constraint on the l2-norm of
h avoids the trivial zero solution. By rearranging the matrices
Yn, the above minimization problem can be solved with an
eigenvalue decomposition [11].

However, the recovery of channels h from Eq. (2) is
dependent from a set of restrictive assumptions. In particular,
the channels have to be co-prime, hence their length L has
to be known in advance. This information is not available in
real situations [11] and if the channel length is not correct,
the problem is ill-conditioned and therefore highly sensitive
to environmental noise. Moreover, if the spectrum of x(k)
contains “holes”, a likely case with real signals, some fre-
quency components of h in Eq. (2) will be weighted by zero
or very small values. This has a subtle but disruptive effect,
since the energy of h, constrained by the l2-norm, may be
forced to concentrate at these frequencies contributing little
in the cost function, so leading to grossly distorted solutions.

This method has been subsequently improved exploiting
the a priori knowledge of the AIR structure [16]. In fact, the
first part of the room AIR can be modelled as a set of positive
pulses, each one given by the direct path or a reflection from
a wall [16]. Thus, sparsity [12], [14] and non-negativity [13]
have been imposed to improve robustness. Even if sparsity
is verified only for early TDOAs and this is not valid for the
‘tail” of the AIR, applications on room reconstruction only
leverage on the sparse component [2], [3], [4], [5], [6], [1],
[15], thus it is extremely important to design methods able to
extract this information. Moreover, speech enhancement [17]
and derevereberation [8] and room aware sound reproduction
have proven to work assuming AIR sparsity.

In [14] a l1-norm penalty was added to Eq. (2) in order
to enforce sparsity, yielding:

min
h

J(h) + λ‖h‖1 s.t. ‖h‖22 = 1, (3)

with J(h) =
∑

n 6=m ‖Ymhn − Ynhm‖22. Unfortunately,
this regularization introduces a fundamental drawback: the
domain of the problem is non-convex due to the quadratic
equality constraint, so making the minimization of J(h) +
λ‖h‖1 prone to local solutions.

To cope with this issue, an anchor constraint can be used
to replace the l2-norm one giving [12]:

min
h

J(h) + λ‖h‖1 s.t. |h1(a)| = 1, (4)

where a is the anchor index 1. The anchor constraint makes
the problem convex [18] and less sensitive to spectrum
holes than l2-norm constraint [12]. However, the anchor
constraints together with the l1-norm penalizes all the peaks
intensities but one, often leading to peak cancellations in

1The anchor index has to be chosen greater than the maximum of the
differences k̃n − k̃1 over n = 1, · · · , N where k̃n is the index of the first
non zero entry of the channel n.

noisy conditions. The approach of [12] has been modified in
[13] adding the non-negativity constraint on the AIR h ≥ 0
(i.e. hn(k) ≥ 0 for k = 1, . . . , L and n = 1, . . . , N ).
Non-negativity yields increased robustness against noise by
further regularizing the problem [19], [20].

III. PROPOSED METHOD

To solve the drawbacks related to the anchor constraint
in Eq. (4), we introduce an l1-norm equality constraint,
obtaining:

min
h
J(h) + λ‖h‖1 s.t. ‖h‖1 = 0, h ≥ 0. (5)

In this way, all the channel elements are equally taken
into account without privileging the one corresponding to
the anchor. At the same time, differently from the l2-norm
constraint, the problem remains convex and differentiable as,
due to the non-negativity constraint, the l1-norm becomes
a simple sum of the elements of h. But setting such l1
constraint destroys the sparsity-inducing effect of the l1
penalty. In fact the l1 penalty becomes a constant that does
not influence the argument of the minimum of the cost
function.

To tackle this issue we propose to solve a sequence of
minimization problems of the form:

ĥ
(z)

= min
h
J(h) + λ‖h‖1 s.t. p(z)>h = 1, h ≥ 0,

(6)
where p(z) is a L× 1 weight vector. At each iteration, p(z)

is made equal to the solution of the problem at the previous
step (z − 1):

p(z) = ĥ
(z−1)

. (7)

In practice we substitute the standard l1-norm constraint with
an adaptive weighted l1-norm constraint p(z)>h = 1.

Concerning the algorithm initialization ĥ
(0)

, we adopt
the solution provided by [13], i.e. the standard l1 penalty
with anchor and non-negativity constraints. Such initializa-
tion generally assures a sufficient degree of sparsity for
the starting guess. In the subsequent steps, the weighted
constraint p(z)>h = 1 will further enforce sparser solutions.
If the equality constraint gives more importance to larger
elements of the channels, the unweighted l1-norm penalty
in the cost function will be able to penalize selectively the
smaller elements, as can be seen comparing iterations 0 and
1 in Fig. 1. Also notice that the initial amplitude distortion
introduced by the anchor is compensated by the subsequent
steps of the algorithm (see Fig. 1).
Geometrical Interpretation. In order to gain a deeper
insight on the effects of the weight vector p2, let us introduce
a new variable k defined as: k = p � h, where � denotes

2Index (z) dropped for simplicity.
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Fig. 1. Example of the iterative process for our proposed
approach with SNR = 14 dB

the Hadamard product. Substituting h with k in Eq. (6), we
can reformulate the problem as:

‖XWk‖22 + λw>k s.t. ‖k‖1 = 1 k > 0, (8)

where w is a new weight vector whose elements are the
inverse of the elements of p, X is a reorganization of matrices
Xi such that J(h) = ‖Xh‖22 and the matrix W is given
by W = diag(w) where diag denotes the operator that
maps a vector into a diagonal matrix. Now, let us give
a geometric interpretation of the quadratic and the linear
term of the cost function in Eq. (8) given the equality
constraint ‖k‖1 = 1. The term w>k is equal to a weighted l1
norm i.e. a “weighted l1 polyhedron” centered at the origin
and “pinched” toward the directions corresponding to the
smallest elements of w. On the other hand, the constraint
‖k‖1 = 1 is a uniform l1 ball of radius 1. It is clear that the
minimization of w>k on the l1 ball ‖k‖1 = 1 is satisfied
at the vertices corresponding to the smallest elements of w,
thus enforcing the sparsity of the solution.

Instead, the quadratic term can be rewritten as ‖XWk‖22 =
k>WX̂Wk, where X̂ = (X>X). The positive semi-definite
matrix X̂ defines a multidimensional ellipsoid centred on the
coordinates origin. The pre- and post-multiplication by the
diagonal matrix W acts as an affine operator that shrinks and
leans the ellipsoid axes in such a way that the new ellipsoid
WX̂W will tend to align its larger axes along the coordinates
corresponding to the smallest elements of w i.e. the largest
elements of ĥ

(z−1)
. This in turn will enforce a solution ĥ

(z)

in which larger components are even larger and the smaller
ones are even smaller, thus promoting a sparser solution.
Therefore, the proposed method induces the sparsity of the
solution by a twofold mechanism, while solving at the same
time the issue of the drawbacks of the anchor constraints.
A recent method [15] follows a somewhat similar strategy,

Fig. 2. Spectra of non-speech (left) and speech (right)
recorded signal used in the experiments.

solving a sequence of problems:

ĥ
(z)

= min
h
‖Xh‖22 + λw̃(z)>h s.t. ‖h‖1 = 1, h ≥ 0,

(9)
with w̃(k)(z) = 1/

[
ĥ(k)(z−1) + ε

]
for k = 1, · · · , NL,

where w̃(k)(z) and ĥ(k)(z−1) denote the k-th element of
w̃(z) and ĥ

(z−1)
respectively and ε is a regularization

parameter. Here just the l1 penalty is weighted, while the
quadratic part ‖Xh‖22 is left unchanged, so limiting the
sparsity-inducing effect. Moreover, since w̃ is explicitly
calculated, it is necessary to choose a value for ε to avoid nu-
merical instabilities. Differently, in our approach the weights
w are only implicitly evaluated, since in the implemented
formulation just the weights p are calculated.

IV. EXPERIMENTS

The proposed algorithm, named here Iterative L1 Con-
straint (IL1C), was compared with the eigenvalue decompo-
sition (EIG) approach [11], the non-negative l1-norm method
[13] (L1NN) and the approach of [15], named here Iterative
l1 Penalty (IL1P). We considered a rectangular room of
6×5×4 m with microphones and sources position randomly
generated at each trial 3. The number of microphones was
fixed to 2. The AIRs were simulated according to the image
method [16] assuming a reflection coefficient of 0.8. Three
sources were used: a 1 s synthetic white noise, a 2 s real
recorded signal consisting in a rustle caused by plastic
material and a 1.8 s male voice segment, all sampled at
16 kHz (check Fig. 2 for the related spectra). The length of
the estimated channel was of L = 700 samples, such value
being an upper bound for every possible real channel length,
given the room geometry. Gaussian white noise was added
to the signals at each microphone output, in order to model
microphone self noise, setting the following SNR values: 20
dB, 14 dB 6 dB and 0 dB. All the parameters for all the tested
methods (λ, a and ε) were optimized by cross-validation. For
IL1C and IL1P, the number of iterations was set to 4. Fig.
3 shows an example of the real and estimated channel for
the four methods, assuming a challenging SNR of 6 dB. As
it can be seen, EIG completely fails due to its extreme noise
sensitivity. L1NN provides a reasonable but very noisy AIR

3To avoid configurations in which the source is too close to the micro-
phones, the x coordinate ranged from 0 m to 2 m for the microphones and
from 4 m to 6 m for the source.
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Fig. 3. Results for the four tested methods and ground truth.
SNR = 6 dB. Synthetic source.

Fig. 4. EPP (left) and PUP (right) versus SNR level for
synthetic, real and speech signals.

reconstruction, from which TDOAs are hardly detectable.
An improved solution is achieved with IL1P but several
spurious peaks are present and a number of true peaks is
canceled out. Differently, a very accurate result is achieved
by IL1C 4. Quantitative results over 50 Monte Carlo simu-
lations are reported in Fig. 4 for synthetic, non-speech and

4Note that the real channel is not perfectly non-negative since the
Dirac pulses, corresponding to the walls reflections, typically fall off the
grid of samples resulting in sinc functions. Despite this slight mismatch
between theoretical assumptions and real data, the position of the estimated
peaks reproduces the positions of the ground truth peaks with remarkable
precision.

speech sources versus SNR. The average error in samples of
estimated peaks position (EPP), limited to matched peaks,
and the percentage of unmatched peaks (PUP) are displayed
in left and right panels respectively. A Ground Truth (GT)
peak is considered unmatched if the closest estimated peak
is more than 10 samples away from it. These two metrics
allow to decouple the effect of the outliers, from the overall
peak position accuracy. The matching between GT peaks and
estimated ones is performed, for each channel, by a Nearest
Neighbour procedure repeated for each ground truth peak5.

As can be seen from Fig. 4, EIG yields very bad per-
formance, almost independent from the SNR level. L1NN
manages to obtain reasonable results but the percentage of
outliers and the average precision are not satisfying for
high SNR values. IL1P improves on average the results of
L1NN while the proposed methods IL1C outperforms all
the other ones. In particular IL1C performance is equal
to IL1P in a few cases, for high SNR values, but it is
significantly higher when the SNR decreases. Moreover,
IL1C performance is less dependent on the parameter λ than
IL1P, as shown by Table I, where results are averaged over
three orders of magnitude of λ. For IL1P the mean values
are by far increased with respect to the values in Table 1, that
were related to the best λ, while for IL1C just a moderate
worsening is observed. Moving from synthetic to speech
results in general get worse, likely due to the progressively
decreasing flatness of the source spectrum that limits the
amount of frequencies available (check Fig. 2). Nevertheless
the good performance of the proposed method favours its
applicability to real noisy environments.

SNR IL1P [15] IL1C

SY

0 dB 1.28 [0.22] 0.49 [0.10]
6 dB 0.53 [0.09] 0.32 [0.02]

R
E 0 dB 1.49 [0.21] 0.70 [0.16]

6 dB 0.46 [0.06] 0.34 [0.03]

SP

0 dB 2.27 [0.26] 1.32 [0.26]
6 dB 1.12 [0.14] 0.80 [0.12]

Table I. EPP and PUP (in squared brackets) for different
sources. Results are averaged over different values of λ.

V. CONCLUSIONS

The proposed method has proven to increase the accuracy
of estimation of AIRs and consequently TDOAs, in respect
to state of the art methods, in challenging realistic conditions.
Future work will test the benefits of the method when applied
to tasks such as room geometry reconstruction.

5To avoid results biased in favour of solutions yielding many
peaks, the Kc estimated peaks with the highest amplitudes have
been taken into account, where Kc is the number of ground truth
peaks for each channel. Peaks are found by a robust peak finder:
http://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder
based on local slope features.
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