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ABSTRACT

For mobile speech application, speaker DOA estimation accuracy,
interference robustness and compact physical size are three key fac-
tors. Considering the size, we utilized acoustic vector sensor (AVS)
and proposed a DOA estimation algorithm previously [1], offering
high accuracy with larger-than-15dB SNR but is deteriorated by non-
speech interferences (NSI). This paper develops a robust speaker
DOA estimation algorithm. It is achieved by deriving the inter-
sensor data ratio model of an AVS in bispectrum domain (BISDR)
and exploring the favorable properties of bispectrum, such as zero
value of Gaussian process and different distribution of speech and
NSI. Specifically, a reliable bispectrum mask is generated to guar-
antee that the speaker DOA cues, derived from BISDR, are robust
to NSI in terms of speech sparsity and large bispectrum amplitude
of the captured signals. Intensive experiments demonstrate an im-
proved performance of our proposed algorithm under various NSI
conditions even when SIR is smaller than 0dB.

Index Terms— Direction of arrival estimation, acoustic vector
sensor, bispectrum inter-sensor data ratio, interference

1. INTRODUCTION

Direction of arrival (DOA) estimation in an acoustic environment
has a wide range of applications such as video conferencing and in-
telligent robots for identifying the speech source localization swiftly
and accurately [2]. For the applications against background noises,
conventional approaches often utilize an array of omni-directional
microphones and DOA estimation is achieved by exploiting phase-
delay information between the microphones [3]. However, conven-
tional arrays often require a large aperture, which presents limits in
space-constrained applications.

By comparison, AVS is more attractive for mobile speech appli-
cations [4, 5] as it can provide more information with a smaller size
and no spatial aliasing limitation [6]. The AVS has been employed
to improve the DOA estimation performance by different methods
such as exploiting beamforming and subspace methods [7–12].

For multisource DOA estimation, in our previous work [1], a
single AVS based algorithm has been developed with the definition
of inter-sensor data ratio (ISDR) in the spectrum domain. By explor-
ing the harmonic structure of speech, the time-frequency points with
high local signal-to-noise ratio (HLSNR-TFPs) were extracted using
the Sinusoidal tracks extraction (SinTrE) method. Then the eleva-
tion and azimuth angles are easy to be estimated by kernel density
estimation (KDE) on the ISDR at the HLSNR-TFPs. However, our
experiments showed that the HLSNR-TFPs extraction method pro-
posed in [1] was not robust to noise and NSI, which degrades the
DOA estimation performance.

This work is partially supported by National Natural Science Foundation
of China (No: 61271309).

As the literature shows, NSI should be considered in the practi-
cal applications, such as the air-condition noise for the audition sys-
tem of the service robot and machine noise for the automatic camera
steering. However, there are very few research outcomes reported in
regard to them.

This paper intends to focus on the robust DOA estimation when
NSI exists. The AVS is compact in size so is used to capture sig-
nals. Our basic idea is to find an effective measure to extract the
DOA information of a speaker while at the same time suppress the
unwanted additive background noise and NSI. Bispectrum is a kind
of high order statistics (HOS) of signal defined in terms of high or-
der cumulants of the random process. The motivation of choosing to
work with bispectrum lies in following aspects: 1) The HOS of the
Gaussian process is always zero [13], which has been used for devel-
oping several DOA estimation algorithms robust to Gaussian noise
with narrowband signals [14–18]. And a recent study adopted HOS
to overcome the effect of spatially colored Gaussian noise for speech
DOA estimation [19]. 2) The bispectra of speech and non-speech
signal developed in this study are different, which means most of
speech DOA cues will not be suppressed by noise and NSI men-
tioned above. As a result, even though [19] is not capable to deal
with the non-Gaussian interferences directly since their bispectra are
non-zero, we can explore redundancy of the speech DOA cues in bis-
pectrum domain to reduce the adverse impact of the NSI.

According to the discussions above, in the following paper, we
firstly introduce the data model of an AVS and derive its bispectrum
expression. Inspired by the previous DOA estimation method devel-
oped in spectrum domain [1], the inter-sensor data ratios model in
the bispectrum domain termed as BISDR is then derived. Through
the analysis of its property, the DOA estimation problem is for-
mulated as extracting the reliable DOA-related information from
the BISDR at certain frequency points with high local signal-to-
interference ratio (HLSIR-FPs). The bivariate KDE technique is
employed as the clustering algorithm to estimate DOA cues and
thereafter the DOA is estimated. It is obvious that one of the key
steps for the proposed DOA estimation method is to determine the
HLSIR-FPs. In our study, a reliable bispectrum mask is derived for
it. Intensive experiments under various NSI conditions and record-
ing data have been carried out to demonstrate the effectiveness and
robustness of the proposed DOA estimation method.

Notation: Throughout the paper, superscripts T and ∗ represent
the matrix or vector transpose and convolution, respectively.

2. DATA MODELS

2.1. AVS Data Models

Generally each AVS unit consists of an omnidirectional sensor (o-
sensor) and three orthogonally oriented directional sensors (named
as u-, v-, w-sensor, respectively). Supposing there is one speech
signal s(k) impinging upon the AVS unit with the DOA of (θs, φs)
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in which the elevation angle θs ∈ (0◦, 180◦) and the azimuth angle
φs ∈ [0◦, 360◦), its associated manifold vector is given by [1]

a(θs, φs) ≡ [us, vs, ws, 1]T , a ∈ R4×1 (1)
where the elements us, vs, andws are the x-,y-, and z-axis direction
cosines, respectively. They can be determined according to the unit
geometry, which is derived as follows:

us = sin θs cosφs, vs = sin θs sinφs, ws = cos θs (2)
Then, the data captured by AVS at time k can be expressed as

x(k) = a(θs, φs)s(k) ∗ hs(k)

+

L∑
i=1

a(θri, φri)ri(k) ∗ hri(k) + n(k) (3)

where x(k) = [xu(k), xv(k), xw(k), xo(k)]T represents the output
of the u-, v-, w-, and o-sensor, respectively; s(k) is the speech sig-
nal with DOA (θs, φs) and the room impulse response hs(k); ri(k)
is the ith NSI signal with DOA (θri, φri) and the room impulse re-
sponse hri(k), which is assumed uncorrelated to the speech signal;
And n(k) = [nu(k), nv(k), nw(k), no(k)]T denotes the zero-mean
additive white Gaussian noise (AWGN) at the u-, v-, w-, and o-
sensor, respectively.

In order to facilitate the discussion, we just assume L = 1. Then
the data model in (3) can be further expressed as:

xu(k) = uss(k) ∗ hs(k) + ur(k)r(k) ∗ hr(k) + nu(k) (4)
xv(k) = vss(k) ∗ hs(k) + vr(k)r(k) ∗ hr(k) + nv(k) (5)
xw(k) = wss(k) ∗ hs(k) + wr(k)r(k) ∗ hr(k) + nw(k) (6)
xo(k) = s(k) ∗ hs(k) + r(k) ∗ hr(k) + no(k) (7)

2.2. Bispectrum Domain Representation

According to the derivation in [20], the following cross-relationships
between xo(k) and xj(k) (for j refers to u, v, w, o) hold in the third
moment domain for the data given by (4)-(7). We have

Rxoxjxo(τ, ρ) = E{xo(k)xj(k + τ)xo(k + ρ)} (8)
With the assumption that s, r, and n are uncorrelated with each

other, and sh(k) = s(k) ∗ hs(k), rh(k) = r(k) ∗ hr(k), taking
j = u as an example, substituting (4) and (7) into (8) gives

Rxoxuxo(τ, ρ) = E{sh(k)ussh(k + τ)sh(k + ρ)}
+ E{rh(k)urrh(k + τ)rh(k + ρ)}
+ E{no(k)nu(k + τ)no(k + ρ)}

(9)

It is noted that E{no(k)nu(k + τ)no(k + ρ)} = 0 [13], then
(9) can be simplified as

Rxoxuxo(τ, ρ) = usE{sh(k)sh(k + τ)sh(k + ρ)}
+ urE{rh(k)rh(k + τ)rh(k + ρ)} (10)

The bispectrum is, by definition, the Fourier transform of the
third moment sequence viz. [21–23]. With the linearity of the
Fourier transform, from (10), we get
Bxoxuxo(Ω1,Ω2) = FT [Rxoxuxo(τ, ρ)]

=FT [usE{sh(k)sh(k + τ)sh(k + ρ)}]
+FT [urE{rh(k)rh(k + τ)rh(k + ρ)}]

(11)

where the FT [·] denotes the 2-D Fourier transform operation. With
the definition, (11) can be further expressed as
Bxoxuxo(Ω1,Ω2) = usBshshsh(Ω1,Ω2) + urBrhrhrh(Ω1,Ω2) (12)

With the same procedure, we can derive the followings:
Bxoxvxo(Ω1,Ω2) = vsBshshsh(Ω1,Ω2) + vrBrhrhrh(Ω1,Ω2) (13)
Bxoxwxo(Ω1,Ω2) = wsBshshsh(Ω1,Ω2) + wrBrhrhrh(Ω1,Ω2) (14)

Bxoxoxo(Ω1,Ω2) = Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2) (15)

Analyzing (12)-(15), we can see that the first terms of (12)-(15)
are only related to the speech source, and the second terms are only
related to the directional non-speech interferences. Our target is to
get the DOA information of the speech signal embedded in the first
terms being able to suppress the adverse impacts of the second terms.

3. PROPOSED DOA ESTIMATION METHOD

3.1. Bispectrum Inter-Sensor Data Ratios (BISDR)

Following the idea of [1], in this subsection, we define the BISDR
of the AVS as follows:

Iuo(Ω1,Ω2) = Bxoxuxo(Ω1,Ω2)/Bxoxoxo(Ω1,Ω2) (16)
Ivo(Ω1,Ω2) = Bxoxvxo(Ω1,Ω2)/Bxoxoxo(Ω1,Ω2) (17)
Iwo(Ω1,Ω2) = Bxoxwxo(Ω1,Ω2)/Bxoxoxo(Ω1,Ω2) (18)

where Iuo(Ω1,Ω2), Ivo(Ω1,Ω2), and Iwo(Ω1,Ω2) are termed as
the BISDR between u- and o-sensor, v- and o-sensor, w- and o-
sensor, respectively. Taking Iuo(Ω1,Ω2) as an example, substitut-
ing

Iuo(Ω1,Ω2) =
usBshshsh(Ω1,Ω2) + urBrhrhrh(Ω1,Ω2)

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

=
us[Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)]

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

+
urBrhrhrh(Ω1,Ω2)− usBrhrhrh(Ω1,Ω2)

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

(19)

To simplify (19), rewrite it as follows:
Iuo(Ω1,Ω2) = us + εu(Ω1,Ω2) (20)

where the second term is given by

εu(Ω1,Ω2) =
urBrhrhrh(Ω1,Ω2)− usBrhrhrh(Ω1,Ω2)

Bshshsh(Ω1,Ω2) +Brhrhrh(Ω1,Ω2)

=
ur − us

1 +Bshshsh(Ω1,Ω2)/Brhrhrh(Ω1,Ω2)

(21)

Similarly, Ivo(Ω1,Ω2) and Iwo(Ω1,Ω2) can be modeled as:
Ivo(Ω1,Ω2) = vs + εv(Ω1,Ω2) (22)
Iwo(Ω1,Ω2) = ws + εw(Ω1,Ω2) (23)

where

εv(Ω1,Ω2) =
vr − vs

1 +Bshshsh(Ω1,Ω2)/Brhrhrh(Ω1,Ω2)
(24)

εw(Ω1,Ω2) =
wr − ws

1 +Bshshsh(Ω1,Ω2)/Brhrhrh(Ω1,Ω2)
(25)

The compact expression of the BISDR can be written as:
I(Ω1,Ω2) = b(θs, φs) + ε(Ω1,Ω2) (26)

where
I(Ω1,Ω2) = [Iuo(Ω1,Ω2), Ivo(Ω1,Ω2), Iwo(Ω1,Ω2)]T (27)

b(θs, φs) = [us, vs, ws]T (28)

ε(Ω1,Ω2) = [εu(Ω1,Ω2), εv(Ω1,Ω2), εw(Ω1,Ω2)]T (29)
In (26), there are two terms in the BISDR. Obviously, the first

term b(θs, φs) is only related to the DOA of the speech source,
which we call “speech DOA cue”. It is clear that if we are able
to find the FPs so that the second term in (26) approaches zero vec-
tor, then speech DOA cue can be perfectly estimated by (26) since
the BISDR I(Ω1,Ω2) are available.

From (21), (24) and (25), we can see that if point (Ω1g,Ω2g)
satisfies Bshshsh(Ω1g,Ω2g) � Brhrhrh(Ω1g,Ω2g), each element
of ε(Ω1g,Ω2g) approximates 0. Then, we name these points as
HLSIR-FPs. Judged from the above discussion, it is also the speech-
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Fig. 1. Example of the bispectrum amplitude of the signal of o-
sensor. Interference: hfchannel noise, SIR = -5dB in (c) and SIR =
10dB in (d). AWGN, SNR = 10dB.

dominated point where the real DOA cues are close to the BISDR.
When L > 1, we can also get the similar results.

In this case, we should have some detailed analysis of the prop-
erties of the bispectra of speech signal and non-speech signal. As
an example, we visualize the bispectra plots of the speech and NSI
at different SIR conditions in Fig.1. We have the following obser-
vations: 1) Comparing Fig.(a) and (b), the spread of bispetra for
speech and non-speech signals are different. 2) Comparing Fig.(a)
and (c), we can clearly see that the pattern of the speech bispec-
trum can be observed mostly in the large-amplitude areas even when
SIR=-5dB. 3) Comparing Fig.(a), (c) and (d), it is clear that with the
increase of SIR, the adverse impact of directional NSI on the bis-
pectrum of the speech reduces. 4) Obviously, from Fig.(c) and (d),
we are confident that we are able to find some FPs where the speech
information dominates, which will lead us estimate the speech DOA
cues from (26) properly. In other words, in the speech-dominated
FPs, the speech DOA cue can be approximated by the BISDR. In
the next subsection, we will introduce the method to determine the
speech-dominated FPs.

3.2. Bispectrum Mask Estimation

From the analysis above, the idea to determine the speech dominated
FPs is very straightforward since the NSI is not able to corrupt the
bispectrum of the speech signal (referring to Fig.1.(c), it is clear to
see the speech bispectrum pattern) at the FPs with large amplitude.
This means we can directly threshold the bispectrum of o-sensor to
extract a so-called speech dominated bispectrum mask and the as-
sociated HLSIR-FPs can be obtained. These HLSIR-FPs then are
applied to compute the corresponding BISDR.

Specifically, in our study, the speech-dominated bispectrum
mask m(Ω1,Ω2) can be determined using o-sensor signal as:

m(Ω1,Ω2)=

{
1 |Bxoxoxo(Ω1,Ω2)|>ξmax(|Bxoxoxo(Ω1,Ω2)|)
0 otherwise

(30)

where | · | is the amplitude operator and the threshold ξ is set as 0.7
by empirical results, which will be described in section 4. With this
bispectrum mask, the BISDR at the speech-dominated FPs can be
computed as follows:

Î(Ω1,Ω2) = m(Ω1,Ω2)I(Ω1,Ω2) (31)
where Î(Ω1,Ω2) is the masked BISDR. Comparing (31) with (26),

the majority of the second term ε(Ω1,Ω2) in (26) will be removed
with mainly the real speech DOA cue b(θs, φs) left.

3.3. DOA Estimation Algorithm

From the description above, it is obvious that the BISDR can be
viewed as the random variables in the bispectrum domain with mean
of ux, vs, and ws, respectively. Specifically, the DOA estimation
task is to estimate the cluster centers at (ûs, v̂s, ŵs) by clustering
the BISDR corresponding to all HLSIR-FPs. To achieve an effective
and robust clustering result, KDE method is adopted in our study
[24]. With the clustering result (ûs, v̂s, ŵs), according to (2), the
estimated DOA (θ̂s, φ̂s) can be calculated as

θ̂s = cos−1 ŵs, φ̂s = tan−1(v̂s/ûs) (32)
To simplify the notation in the following context, the proposed

DOA estimation algorithm is termed as the AVS-BISDR algorithm,
which is developed under the cluster of BISDR data using single
AVS. The AVS-BISDR algorithm is summarized as follows:

1) Segment the AVS output data.
2) Calculate the bispectrum of the four sensors by (12)-(15).
3) Calculate the BISDR between sensors by (16)-(18).
4) Get the bispectrum mask by (30) and add it on the BISDR.
5) Estimate the DOA via (31) by the clustering result derived

using KDE [24].

4. EXPERIMENTAL RESULTS

In this section, several experiments are carried out to evaluate the
performance of our proposed AVS-BISDR algorithm under differ-
ent conditions. The GMDA-Laplace algorithm [6] and AVS-ISDR
algorithm [1] are taken as the comparison methods.

The simulation experimental settings are as follows: the speech
signal is of 3 seconds and sampled at 8kHz. One NSI is set at
(60◦, 75◦) and no reverberation is considered. The type of the NSI
can be white Gaussian noise, hfchannel noise, pink noise, or factory
noise taken from Noisex92 [25]. In addition, the AWGN is taken
to simulate a more adverse environment. For processing the signals,
the frame size is set to be 256 samples with 60% overlap. It is noted
that, for the GMDA-Laplace algorithm, following the setup in [6],
the DOA estimation results are obtained by running two times of the
algorithm since originally the GMDA-Laplace algorithm only use
two microphones placed along one axis with 8cm spacing.

The root mean squared error (RMSE) averaging over one hun-
dred independent trials is taken as the performance metric, which

is defined as RMSE = 0.5
√∑100

l=1 ((θ̂l − θ)2 + (φ̂l − φ)2)/100,

where θ̂l and φ̂l are respectively the estimated angles of the target
speaker angles θ and φ on the lth trial.

In the first experiment, we aim to evaluate the impact of choos-
ing different thresholds of the mask on the performance of our pro-
posed algorithm under different SIR conditions since the threshold is
an important parameter for it. The speech source is set at (60◦, 45◦).
The results are shown in Fig. 2. It is noted that the RMSE reduces
with the increase of SIR. Besides, when ξ > 0.5, the RMSE is not
sensitive to the choice of ξ. The optimal ξ can be selected as 0.7,
which gives the best results under most SIR conditions. Indirectly,
these results further validate the effectiveness of our proposed bis-
pectrum mask for HLSIR-FPs extraction.

The second experiment is conducted to evaluate the sensitivity
of the proposed DOA algorithm over different azimuth angles. To vi-
sualization purpose, we fix θs = 60◦. The experimental results are
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shown in Fig. 3. We are encouraged to see that our proposed AVS-
BISDR algorithm outperforms the comparison algorithms, where the
RMSE values are closed to 0◦ for all angles. The AVS-ISDR algo-
rithm performs the second best. It is noted that the RMSE values
are below 2◦ except the values at three special angles (φs = 0◦,
90◦, and 180◦). For the GMDA-Laplace algorithm, we can see the
significant impact of the NSI. The RMSEs of the GMDA-Laplace al-
gorithm range from 3◦ to 20◦. It is obvious that the GMDA-Laplace
algorithm performs worst at two special angles (φs = 0◦ and 180◦).

The third experiment aims at evaluating the robustness of the
proposed AVS-BISDR under different input SIRs and types of NSI.
The speech source is set at (60◦, 45◦). Experimental results are pre-
sented in Fig. 4. We can see that the RMSEs of the proposed method
under all the four interferences are constantly close to 0◦ even when
the SIR is less than 0dB. For the other two algorithms, they both
suffer a severe decline of the DOA estimation performance on the
impact of the strong interferences. This verifies our proposed algo-
rithm is more effective and robust under NSI.

In the fourth experiment, the behavior of the AVS-BISDR under
different reverberation levels is evaluated. The experimental setup
is as follows: A rectangular room with size 10m × 5m × 4m is
modeled in the experiment by the image method [26]. Five different
reverberation time (RT60) conditions are considered. The speech
source is located at DOA of (60◦, 45◦). It is seen in Fig. 5 that the
curve of the proposed method is approximately constant and keep a
lower RMSE than that of AVS-ISDR for all RT60 conditions. This
indicates that our proposed method is not sensitive to the room rever-
beration, which is a very favorable property since the performance of
many existing DOA estimation algorithms, such as GMDA-Laplace,
degrades when heavy room reverberation exists.

The last experiment is conducted to evaluate the performance of
the proposed AVS-BISDR algorithm in a real scenario using the AVS
data capturing system developed by ADSPLAB [1]. Five different
groups of DOA are estimated respectively in Table 1. We are happy
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Fig. 4. RMSE versus different SIR levels and interference signals
as: white Gaussian noise (a), hfchannel noise (b), pink noise (c), and
factory noise (d). AWGN, SNR=10dB.
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Table 1. DOA estimation resluts in a real scenario

True DOA θ 90◦ 90◦ 90◦ 90◦ 90◦

φ 0◦ 45◦ 90◦ 135◦ 180◦

AVS-BISDR θ 93.57◦ 93.52◦ 90.09◦ 91.92◦ 89.42◦

φ 1.04◦ 43.56◦ 90.36◦ 132.61◦ 179.61◦

to see that the DOA estimation errors of the proposed AVS-BISDR
algorithm are less than 5◦ in each group in the real scenario.

5. CONCLUSIONS

In this paper, a novel interference robust DOA estimation method
for speech source (termed as AVS-BISDR) has been developed in
the bispectrum domain using single AVS. The key idea of deriving
AVS-BISDR algorithm is to exploit the speech HOS spatial location
information embedded in the AVS, and extract the HLSIR-FPs for
the DOA estimation of the speech source with the bispectrum mask.
Extensive experiments have been conducted to evaluate the perfor-
mance of the proposed AVS-BISDR under different SIR levels and
interference conditions. Results validate the superior performance of
our proposed AVS-BISDR using simulated and real captured data. It
is found that AVS-BISDR is able to obtain high DOA estimation ac-
curacy even under strong interferences. Our future work will focus
on the multisource DOA estimation in non-stationary interference
situations with strong noises.
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