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ABSTRACT

Spatial aliasing and spatial resolution are the two issues faced by
most multiple speech source localization methods. The histogram of
time delays is a simple but effective method to deal with these two
issues on linear arrays. But few methods were capable of applying
the time delay histogram to directional-of-arrivals (DOAs) estima-
tion using a planar array. This paper proposes a novel method to
estimate DOAs of multiple speech sources based on time delay his-
tograms across all microphones of a planar array. The pairwise time
delays of different sources are firstly obtained from each time de-
lay histogram, and then, the time delays are identified with variant
speech sources. Eventually, the DOA of each source is estimated
by regression over its associated time delays. We conducted some
experiments in both simulated and real environments to evaluate the
proposed method using an eight-element circular array. The experi-
mental results confirmed not only its high computational efficiency,
but also its superiority in spatial resolution and spatial anti-aliasing.

Index Terms— Speech source localization, time delay his-
togram, spatial aliasing, spatial resolution, direction of arrival.

1. INTRODUCTION

Multiple speech source localization is widely used in numerous ap-
plications such as speech enhancement, speech separation, and dis-
tant speech recognition [1]. The assumption of speech sparse dis-
tribution in the time-frequency (TF) domain is frequently utilized to
localize multiple speech sources, and many sparsity-based methods
were presented in the past several decades [2] - [6]. Besides the a-
coustic robustness, the spatial aliasing and spatial resolution are the
two challenging issues that are faced by the sparsity-based method-
s. Speech is a wide-band signal, and spatial aliasing occurs at some
high frequencies when the microphones are widely spaced, where
one given time delay corresponds to multiple time delay candidates.
Limiting the inter-microphone space was often used to avoid spatial
aliasing [6], [7], but the small space will degrade the spatial resolu-
tion [8]. Traversing all the potential numbers of aliasing period is
another method to resolve spatial aliasing for linear arrays [3], [9].
However, the situation is extremely complex for planar arrays, where
there may exist a large number of combinations of aliasing period
across all microphone pairs in high frequencies. So the traversing
method will lead to heavy computational load for planar arrays. A
closed-form method of spatial de-aliasing for multiple speech source
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Fig. 1: Typical time delay histograms: (a) Histogram of one speech
source with serious spatial aliasing at high frequencies; (b) His-
togram of two closely located sources. The dotted lines denote the
true time delays.

localization has been presented for real-time speech source localiza-
tion [10]. But this method can not well treat serious spatial aliasing.
The other challenging issue is spatial resolution. When the spatial lo-
cations of speech sources are close to each other, the speech sources
are difficult to be discriminated and the miss or false detections are
likely to occur.

The histogram analysis is a simple but effective approach to deal
with these two issues. Because the periods at variant frequencies are
different, the peaks of aliased time delays are not so significant as the
peak of actual time delays, as shown in Fig. 1(a). In the other word,
the time delay histogram has the capability of spatial anti-aliasing.
Moreover, the histogram approach outperforms conventional meth-
ods in discrimination of closely located sources. The cluster-based
methods were conventionally utilized to identify speech sources [2],
[3], [7]. But those methods are likely to confuse two closely located
sources as one cluster, and the imaginary sources with low occur-
rence were usually taken as a real source. On contrast, the histogram
method is capable of discriminating the imaginary sources from re-
al sources according to occurrence and telling two closely located
sources apart, as illustrated in Fig. 1(b).

The proposed method takes advantage of the time delay his-
togram to estimate DOAs of multiple speech sources using a pla-
nar array. The time delays of each microphone pair are obtained by
picking the peaks of the corresponding histogram of time delays at
all times and all frequencies. The critical problem is to identify each
time delay with a source. An algorithm is presented to identify those
time delays with each source. Eventually, the DOA of each source is
estimated by means of regression over their associated time delays.

2. PROBLEM FORMULATION

Let us consider D speech sources that impinge on a K-element pla-
nar array in a far-field scenario. It is assumed that the size of the
array aperture is small relative to the distance from the sources to
the array. Speech signal has been shown to be sparsely distributed
in the TF domain [11]. At a given TF bin, there is high likelihood
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that at most one speech source is dominating in power and the con-
tributions from the remaining sources are negligible. Based on these
assumptions, the signal received by the kth microphone is represent-
ed in frequency domain as

Yk(ωf ) = e−jωfφk,dSd(ωf ) +Nk(ωf ), f ∈ {1, . . . , F}, (1)

where
d = arg max

d∈[1:D]

∣∣Sd(ωf )
∣∣, (2)

where k denotes the microphone index, 0 ≤ ωf ≤ 2π denotes the
digital frequency, f denotes the frequency index, j =

√
−1 denotes

the imaginary unit, φk,d denotes the propagation time from the dth
source to the kth microphone, Sd(ωf ) denotes the signal emitted
from the dth source, F denotes half short-term Fourier transform
(STFT) length, and Nk(ωf ) denotes the acoustic interferences that
comprise the additive noise and reverberation.

There are in total M = K(K − 1)/2 microphone pairs. For a
given TF bin, the time delay is determined by the dominant source.
The mth pairwise time delay between the pth and qth microphone
can be expressed as

τ̂m,f =
[
∠Yp(ωf )− ∠Yq(ωf )

]/
ωf

= φq,d − φp,d + nm,fTf + ξ(ωf )

= ϕm,f + nm,fTf ,

(3)

where
ϕm,f ∈ [−Tf/2, Tf/2], Tf = 2π/ωf ,

where ∠(.) denotes the phase operation, ξ(ωf ) is the perturbation
caused by acoustic interferences, Tf denotes the period at the f th
frequency, ϕm,f denotes the temporal phase that is derived from the
observed phase difference, and the integer nm,f denotes the number
of aliasing periods. nm,f may have several candidates for widely
spaced microphones, which leads to several candidates for each time
delay. The potential time delays are given by a set:

Bm,f =
{
τ
∣∣∣τ = ϕm,f + nm,fTf ,

−rm/c− ϕm,f

Tf
≤ nm,f ≤ rm/c− ϕm,f

Tf

}
,

(4)

where c denotes the sound velocity and rm denotes the distance be-
tween the mth microphone pair. The cardinality |Bm,f | may be dif-
ferent from TF bin to TF bin. If |Bm,f | > 1, spatial aliasing occurs
at this TF bin. |Bm,f | = 1 indicates that there is no spatial aliasing.
If |Bm,f | = 0, the time delay at this TF bin is invalid and it will
be disregarded in the following processing. For the mth microphone
pair, the set of time delay candidates at all frequencies is given by

Γm =
{
Bm,2, · · · , Bm,F

}
, (5)

where the first frequency is disregarded since it does not contain the
information of time delay. The time delays of microphone pairs are
obtained by applying the histogram analysis on set

{
Γ1, . . . ,ΓM

}
,

and then, the DOAs are derived from these delays.

3. PROPOSED METHOD

The basic idea of the proposed method is to estimate time delays
of each microphone pair and identify the individual time delay with
a speech source. By constructing the time delay histogram of the

Fig. 2: Azimuth histogram of three speech sources. The dotted lines
denote the initial azimuths.
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Fig. 3: Block diagram of the proposed method.

mth microphone pair using Γm, each significant peak with high oc-
currence is identified as the time delay of a speech source, which is
represented by a set:

Υm =
{
τ̂m,1, · · · , τ̂m,Im

}
, (6)

where Im denotes the number of distinct peaks. In desirable acoustic
conditions, Im is equal to the source number D. Under adverse en-
vironments, however, Im may be greater than or less than the num-
ber of real speech sources. The DOAs are estimated from the set
Ψ =

{
Υ1, . . . ,ΥM

}
.

Generally speaking, the azimuth is the most reliable feature to
discriminate different sources for the horizontally placed planar ar-
ray, and it is therefore utilized to identify time delays in Ψ with
speech sources in the proposed method. For a planar array, every
two delays (τ1, τ2) can determine an azimuth, which is given by

α̂τ1,τ2 = G(τ1, τ2), τ1 ̸= τ2, (7)

where G(·) is a regression function that is determined by the array
topology, the detail of which is given in reference [12]. There are
three cases for a pair of time delays in (7). The first case is that
the two delays are associated with the same speech source, where
the determined azimuth is often close to the actual azimuth of this
source. The second case is that the two delays belong to different
sources, where the function G may have no output or the outputs are
randomly distributed. The first two cases only consider the delays
correspond to different microphone pairs. The third case is that the
two delays correspond to the same microphone pair where the func-
tion has no output. If the histogram is constructed on all potential
azimuths, each significant peak of occurrence usually corresponds
to a speech source, as shown in Fig. 2. These azimuths are taken as
the initial estimates, which are given by

A =
{
α̂1, . . . , α̂D̂

}
. (8)

The number of speech sources, D̂, is determined by counting the
significant peaks in the azimuth histogram. Each initial azimuth of
a source is used to identify time delays in Ψ with this source, and
then, this azimuth is refined by regression over all time delays that
associated with this source. The time delays are identified by a vot-
ing process. Let’s define an azimuth set that is associated with a time
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delay τm,i in Ψ, which is given by

Φ(τm,i) =
{
α|α = G(τ, τm,i), τ ∈ Ψ and τ ̸= τm,i

}
. (9)

For each τm,i,

vd(τm,i) = vd(τm,i) + 1,

if : F(α− α̂d) < δ, α ∈ Φ(τm,i),
(10)

where vd(τm,i) denotes the votes that associate τm,i with the dth
source, δ denotes a voting threshold, and the minus operation for
angular degree is defined as

F(α) =
∣∣α+ 360◦ × ĥ

∣∣, (11)

where
ĥ = argmin

h

∣∣α+ 360◦ × h
∣∣,

where h is an integer that minimizes the absolute error. Each time
delay is identified to the speech source with the maximal votes,
which is given by

d(τm,i) = arg max
d∈{1,...,D̂}

vd(τm,i). (12)

The time delays associated with a speech source are described by

Λd =
{
τd,1, · · · , τd,Ld

}
. (13)

It should be noted that some time delays in set Λd may corre-
spond to the same microphone pair. In this case, the time delay with
the highest votes among these conflicted delays is remained and the
other conflicted delays are removed from this set. Afterwards, the
time delays identified to the dth speech source is obtained as (13),
where Ld is the total number of time delays associated with the dth
source. It should be mentioned that

∑D̂
d=1 Ld <=

∑M
m=1 Im be-

cause there may exist some miss detected time delays, i.e., some time
delays are not identified to any source. By regression over time de-
lays in Λd, the closed-form solution to the azimuth of the dth speech
source is given by

α̂d = G(τd,1, · · · , τd,Ld). (14)

4. IMPLEMENTATION

The block diagram of the proposed method is shown in Fig. 3, where
the histogram analysis has been used twice. One is to estimate the
pairwise time delays, and the other is to estimate the initial azimuth-
s. Spurious peaks in the histograms are smoothed out by a Hanning
window. Here, each significant peak is defined as one with occur-
rence greater than threshold △, which is given by

△ = Oavg + η(Omax −Oavg), (15)

where Oavg and Omax denote the average and maximum of the s-
moothed occurrence, respectively, and the coefficient η (0 < η < 1)
is set by experience. The estimation is summarized in Algorithm 1,
where an algorithm to identify time delays with speech sources is
shown as Algorithm 2.

Algorithm 1 : DOAs estimation

1: Calculate time delay candidates at all frequencies using (3), (4)
and (5).

2: Construct the time delay histogram for each microphone pair.
3: Estimate the pairwise time delays from histograms and construct

the time delay set Ψ =
{
Υ1, . . . ,ΥM

}
.

4: Calculate the azimuths of every two time delays in Ψ using (7).
5: Construct the azimuth histogram and determine the number of

speech sources D̂ and the initial azimuths A =
{
α̂1, . . . , α̂D̂

}
.

6: Identify each time delay in Ψ with a source using Algorithm. 2.
7: Obtain

{
Λ1, · · · ,ΛD̂

}
and calculate the azimuths of speech

sources by regression using (14).

Algorithm 2 : Time delays identification

1: for each d ∈ {1, . . . , D̂} do
2: Λd = Ø.
3: end for
4: for each τm,i ∈ Ψ do
5: for each d ∈ {1, . . . , D̂} do
6: vd(τm,i) = Ø.
7: end for
8: for each τ ∈ Ψ and τ ̸= τm,i do
9: α = G(τ, τm,i).

10: for each d ∈ {1, . . . , D̂} do
11: if F(α− α̂d) < δ then
12: vd(τm,i) = vd(τm,i) + 1.
13: end if
14: end for
15: end for
16: d(τm,i) = arg max

d∈{1,...,D̂}
vd(τm,i).

17: Λd(τm,i) = Λd(τm,i)

∪{
τm,i

}
.

18: end for

5. EVALUATION

This section evaluates the proposed method by the simulated and
real environments. The proposed method was tested using an eight-
element uniform circular array. Since the small-size array is hor-
izontally placed, it is incapable of providing precise elevation dis-
crimination, and so, the evaluation focused on the arrival azimuths.
The scenarios were simulated using the image source method [13] to
control reverberation time. The reverberation time T60 is set to 200
milliseconds in the simulated experiment. The white noise was arti-
ficially added to the simulated signal at SNR of 10 dB. The continu-
ous speech taken from the TIMIT [14] database was used as source
signal. The signal was re-sampled to 8000 Hz.

The proposed method was compared with TF-CHB [4] and
STMV [15]. TF-CHB is a typical sparsity-based method, in which
the azimuths are estimated at individual bins and summarized across
all bins. The STMV is a typical beamformer-based method, which
steers the frequency-averaged covariance matrix to various direc-
tions. The directions with local maximum coherence are identified
as the directions of speech sources. The TF-CHB and STMV deter-
mine the number of sources in a way similar to the proposed method
and both methods perform hypothesis test at 1◦ intervals. All three
methods employed 256-point DTFT and 32 milliseconds frames
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Fig. 4: Histograms of output azimuths under various array radius.
The dotted lines denote the true azimuths.

0

20

40

60

80

100

120

Azimuth (°)

Oc
cu

rre
nc

e

 

 

TF-CHB

STMV

Proposed method

Azimuth (°)

270 300 330 360
0

20

40

60

80

100

Azimuth (°)

Oc
cu

rre
nc

e

 

 

300 330 360
Azimuth (°)

α
1
=300°

α
2
=345°

α
1
=300°

α
2
=325°

α
1
=300°

α
2
=320°

α
1
=300°

α
2
=315°
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of two speech sources. The dotted lines denote the true azimuths.

without frame overlap and conducted on the continuous speech
segments with duration of 1.6 seconds.

The first experiment compared the influences of the array radius
on performance. Three speakers were respectively located at a hori-
zontal distance of 1.15 m, 0.86 m, and 0.63 m from the array center,
and at the azimuth angles of 74◦, 309.6◦, 352.7◦. The experimental
setup is similar to AV16.3 corpus [16]. The array radius is respec-
tively set to 10 cm, 14 cm, and 18 cm. The histograms of the output
azimuths are plotted in Fig. 4. All three methods perform well on the
array with 10 cm radius, where the spatial aliasing is not so serious.
With the increasing of radius, the aliasing becomes more serious.
On the microphone pair with 36 cm space, for example, there are at
most eight time delay candidates that correspond to a given phase
difference. However, the proposed method performs even better on
the large-radius array than on the small-radius arrays. On contrast,
STMV and TF-CHB are significantly deteriorated by the serious s-
patial aliasing. It should be mentioned that TF-CHB only utilizes the
azimuth histogram instead of the time delay histogram, and so, it can
not well treat spatial aliasing. This experimental results confirmed
the superiority of the proposed method in spatial anti-aliasing.

The second simulated experiment investigated the spatial resolu-
tion of three methods. Two speakers were located at various azimuth
spaces. Fig. 5 illustrates the azimuth histograms for different spac-
ings of azimuth angles. The spatial resolution of TF-CHB is better
than STMV because TF-CHB uses the azimuth histogram. STMV is
incapable of distinguishing two sources when their azimuth spacing
is less than 25◦. The proposed method has the best spatial resolution
among the three methods.

Table 1: Performance comparison on AV16.3 data set.

Algorithm RMSE PDR FDR
TF-CHB 4.07◦ 74% 7.5%
STMV 3.07◦ 77% 8.1%

Proposed method 2.71◦ 83% 1.9%
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Fig. 6: Histogram of output azimuths for AV16.3 data set. The dot-
ted lines denote the true azimuths.

Table 2: Computational load comparison.

Algorithm Complex multiplication Complex add
TF-CHB 16,180,000 2,323,000
STMV 373,700,000 373,740,000

Proposed method 345,000 1,280,000

The third experiment was conducted in real environment. The
real data was taken from the publicly available AV16.3 corpus [16].
The signal used in this evaluation is the fourth fragment of the cor-
pus recording, which is labeled ”seq37-3p-0001”. The signals were
re-sampled to 8000 Hz. The radius of microphone array is 10 cm.
The azimuth histogram is plotted in Fig. 6. The detected sources are
separated into two categories, namely the correctly detected sources
and the incorrectly detected sources. The detection is considered to
be correct if the estimated azimuth deviates no more than 8◦ from
the actual azimuth of any source. The incorrectly detected sources
consist of the ghost sources (detected but non-existing sources) and
the inaccurately detected sources. In this experiment, the incorrectly
detected sources are seldom present, and so, RMSE can be utilized
to evaluate the absolute error between the actual azimuths and the
estimated azimuths. Besides, the positive detection rate (PDR) (i.e.,
the ratio of the number of correctly detected sources to the total num-
ber of sources) and the false detection rate (FDE) (i.e., the ratio of
the number of incorrectly detected sources to the total number of
sources) are used to evaluate the detection correctness. The RMSE,
PDR and FDR are summarized in Table 1. The experimental result
shows that the proposed method outperforms TF-CHB and STMV.

At last, the computational load of three methods are compared.
The numbers of complex multiplication and complex add used by
three methods are summarized in Table 2. The result shows that the
computational load of the proposed method is much smaller than
TF-CHB and STMV. The STMV has a heavy computational load
because of the two-dimensional (360 × 90) grid search. Both the
numbers of complex multiplication and complex add used by STMV
are more than 250 times than the proposed method. The number
of complex multiplication used by TF-CHB is nearly 4.7 times as
much as the proposed method and the number of complex add is
approximately 1.8 times than the proposed method. The proposed
method outperforms other two methods in computational efficiency.

6. CONCLUSIONS

This paper proposes a sparsity-based method to localize multiple
speech sources by utilizing time delay histograms on a planar array.
Because the time delay histogram has the intrinsic advantages in s-
patial anti-aliasing and high spatial resolution, the proposed method
can be applied on large-size arrays and can discriminate two close-
ly located sources. Moreover, the proposed method exhibits high
computational efficiency.
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