
LARGE REGION ACOUSTIC SOURCE MAPPING: A GENERALIZED SPARSE
CONSTRAINED DECONVOLUTION APPROACH

Shengkui Zhao? Cagdas Tuna? Thi Ngoc Tho Nguyen? Douglas L. Jones?† ∗

? Advanced Digital Science Center (ADSC),
Illinois at Singapore, 138632, Singapore

† Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, IL 61820, United States

ABSTRACT

This paper presents a generalized multiple-point sparse con-
strained deconvolution approach for mapping acoustic noise
sources in large regions using a movable array. Extended
from our previous MPSC-DAMAS approach, we first derive
a generalized inverse problem relating to the source powers
and the array manifold using a generic beamformer and an
explicit measurement noise model. We then propose a gener-
alized MPSC-DAMAS (GMPSC-DAMAS) approach for re-
solving the inverse problem. A new parameter setting method
based on a multiple-point minimum-variance-distortionless-
response (MVDR) beamformer is also presented. The real-
izations of the GMPSC-DAMAS approach using the delay-
and-sum (DAS) beamformer and the MVDR beamformer are
evaluated. Simulation results show the proposed GMPSC-
DAMAS approach achieves much lower absolute power esti-
mation errors and processing time than the MPSC-DAMAS
approach in terms of number of sources and robustness to
measurement noise.

Index Terms— microphone arrays, source localization,
acoustic source mapping, beamformer

1. INTRODUCTION

Environmental noise pollution in large urban areas becomes
more and more serious and is known to produce significant
adverse impact on health and longetivity. To address this
problem, locating environmental noise sources and measur-
ing their levels on a city- or even nation-scale are essential.
However, deploying dense microphone arrays spanning the
entire region of interest, or sequential noise measurements at
thousands of locations on a dense grid on this scale would
be prohibitively expensive [1]. In our previous study [2],
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we presented an acoustic measurement scheme using a small
movable array to rapidly acquire measurements at many dif-
ferent locations, creating a kind of non-coherent virtual array
of much larger aperture. The proposed multiple-point sparse-
constrained deconvolution approach for mapping acoustic
sources (MPSC-DAMAS) is more effective for mapping
noise sources in large regions than the DAMAS [3], the SC-
DAMAS [4] and the CMF [5] approaches that are originally
proposed for aeroacoustic measurements of relatively small
regions.

In this study, we further improve the MPSC-DAMAS ap-
proach by presenting a generalized MPSC-DAMAS (GMPSC-
DAMAS) approach derived based on a generic beamformer
and an explicit measurement noise model. Two implementa-
tions of the GMPSC-DAMAS approach are studied using the
DAS beamformer and the minimum-variance-distortionless-
response (MVDR) beamformer. We further present a new
parameter-setting method based on a multiple-point MVDR
(MP-MVDR) beamformer, which is not restricted to the nor-
malized steering vectors as in the study for SC-DAMAS [4]
and has no requirement of the number of sources as in the
study for SC-RDAMAS [6]. Performance evaluations for the
GMPSC-DAMAS approach are provided and compared with
the MPSC-DAMAS approach in terms of number of sources,
robustness to measurement noise, and processing time.

2. PROBLEM FORMULATION

Consider a wave field generated by a number of monopole
acoustic sources, where the locations of the acoustic sources
are considered to be sparse and inside the field. The wave
field is divided into a dense grid of I “scanning” locations and
every scanning location is considered as a potential source
whose signal power is to be estimated, where the grid size de-
termines the scanning resolution. Let the three-dimensional
scanning location be denoted by pi = [xi, yi, zi]

T for i =
1, ..., I . A movable microphone array is used to sense the
sound waveforms at K selected locations in the wave field,
where the center of the microphone array corresponds to the
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selected location. Let pk,m = [xk,m, yk,m, zk,m]T denote the
location of the mth microphone at the kth sensing location,
where m = 1, ...,M and M is the number of microphones in
the array. Notice that in aeroacoustic measurements the mi-
crophone array is placed parallel to the scanning region. We
present the acoustic measurements with the microphone ar-
ray placed inside the scanning region. The M -dimensional
frequency-domain array output vector at the kth sensing posi-
tion can be expressed by the following signal model [2], [4]:

zk(n, ωl) = Ak(ωl)sk(n, ωl) + vk(n, ωl), (1)

where n = 1, ..., Nk and Nk is the number of fast Fourier
transform (FFT) segments recorded at the kth array position,
ωl denotes the lth interested frequency band, sk(n, ωl) =
[sk,1(n, ωl), ..., sk,I(n, ωl)]

T represents the vectorization of
the source signals of all the scanning locations in the grid
of interest at the kth array sensing position (note that not all
scanning locations have source signals and the source signal
is considered zero when there is no source signal at the scan-
ning location), (·)T denotes the transpose of the argument,
vk(n, ωl) is the additive spatially-white noise vector received
by the array at the kth sensing position, Ak(ωl) ∈ CM×I
is the array manifold matrix at the kth sensing position and
is defined as Ak(ωl) = [ak(p1, ωl), ...,ak(pI , ωl)], where C
denotes the complex value space, and ak(pi, ωl) is the steer-
ing vector corresponding to the ith scanning location and the
kth sensing position and is modeled by

ak(pi, ωl) =
[ 1

ri,k,1
e−jωlri,k,1/c, ...,

1

ri,k,M
e−jωlri,k,M/c

]T
(2)

where ri,k,m = ‖pi − pk,m‖ is the Euclidean distance be-
tween the ith scanning location and the mth microphone at
the kth array sensing position, and c is the speed of sound in
air. In this work, we address the acoustic mapping problem of
estimating the signal power level at each the scanning loca-
tion i based on the observation vectors zk(n, ωl) at different
sensing positions. In the following, ωl will be omitted from
the presentation for simplicity.

3. GENERALIZED MULTIPLE-POINT SC-DAMAS

We assume that the acoustic sources and the additive noises
are zero-mean mutually uncorrelated signals [2], [4]. Tak-
ing into account the signal model (1), the spatial covariance
matrix at the kth sensing position is obtained by sample aver-
aging as follows:

Rk =
1

Nk

Nk∑
n=1

zk(n)z
H
k (n) = AkXkA

H
k +Vk, (3)

where Rk ∈ CM×M , Xk = 1
Nk

∑Nk

n=1 sk(n)s
H
k (n) ∈ CI×I

represents the signal sample covariance matrix at the kth sens-
ing position, and Vk = 1

Nk

∑Nk

n=1 vk(n)v
H
k (n) ∈ CM×M

represents the measurement noise covariance matrix at the
kth sensing position, where R denotes the real value space
and (·)H denotes the conjugate transpose of the argument.
When a sufficient number of segments is available (Nk � 1),
we can have the following good approximations: Xk ≈
diag{xk,1, · · · , xk,I} and Vk ≈ diag{σ2

k,1, · · · , σ2
k,M}

where xk,i denotes the source power and σ2
k,m denotes

the noise power. In our previous study [2], we assumed
Vk = σ2

kI where I is the identity matrix. Here, we consider a
more general case of unequal additive noise powers. We fur-
ther assume the sources are long-time stationary such that the
signal covariance matrices Xk are the same at all the sensing
positions and denoted by X = diag{x1, · · · , xI}. Then, Rk

in (3) can be further written as

Rk = AkXAH
k +Vk. (4)

Let wk,i, i = 1, ..., I, k = 1, ...,K denote the weight vec-
tor of a generic beamformer for the scanning location i and
the array position k. The power estimate for the scanning lo-
cation i and the array position k is given by

yk,i = wH
k,iRkwk,i. (5)

Substituting (4) into (5), we can obtain a convolution rep-
resentation for yk,i:

yk,i = wH
k,iAkXAH

k wk,i +wH
k,iVkwk,i

= uHk,iXuk,i + w̃T
k,iσk

= cTk,ix+ w̃T
k,iσk, i = 1, ..., I, (6)

where uk,i = AH
k wk,i, ck,i = [‖uk,i,1‖2, ..., ‖uk,i,I‖2]T rep-

resents the convolution coefficients where uk,i,j , j = 1, ..., I
is the jth element of uk,i, x is the vector of the diagonal
elements of X and represents the signal powers of the po-
tential sources at the scanning region of interest, w̃k,i =
[‖wk,i,1‖2, ..., ‖wk,i,M‖2]T where wk,i,m, i = m, ...,M is
the mth element of wk,i, and σk is the vector of the diagonal
elements of Vk. Let yk = [yk,i, ..., yk,I ]

T denote the power
estimate vector at the array position k. The vector form of (6)
at the array position k is expressed as

yk = Ckx+Wkσk, k = 1, ...,K, (7)

where Ck = [ck,1, ..., ck,I ]
T ∈ RI×I is the linear convolu-

tion matrix (also known as array’s point spread function) and
Wk = [w̃k,1, ..., w̃k,I ]

T ∈ RI×M is a linear matrix.
By stacking up all vectors yk, we obtain the following

linear system of equationsy1

...
yK

 =

C1

...
CK

x+

 W1 · · · 0I×M
...

. . .
...

0I×M · · · WK


σ1

...
σK

 (8)

or
y = Cx+Wσ, (9)
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where y = [yT1 , ...,y
T
K ]T , C = [CT

1 , ...,C
T
K ]T , W =

diag{W1, ...,WK}, and σ = [σT1 , ...,σ
T
K ]T . When K = 1,

the inverse model (8) is considered as a generalization of the
inverse model studied in DAMAS [3] and SC-DAMAS [4]
using a generic beamformer and explicit noise model. When
K > 1, the inverse model (8) is a generalization of the inverse
model studied in our previous work [2].

Estimating the source power vector x in (8) is an inverse
problem with y, C and W known. We extend our previ-
ous MPSC-DAMAS approach [2] and propose a generalized
MPSC-DAMAS (GMPSC-DAMAS) approach as follows:{

minx,σJ (x,σ) = ||y −Cx−Wσ||22
s.t. ‖x‖1 ≤ β, xi ≥ 0, σ2

k,m ≥ 0,
(10)

where i, k,m take values from 1 to I,K,M , respectively,
xi ≥ 0 enforces every element of x to be nonnegative, and
‖x‖1 is the `1 norm of x. Here, the user parameter β is the
upper bound of the total source power, which is to be dis-
cussed next. Note that the GMPSC-DAMAS approach jointly
estimates the source power x and the additive noise power σ.
There are M × K unknown additive noise powers in (10),
and the number reduces to K if the additive noise powers are
equal at all the microphones and further reduces to 1 if the
additive noise powers are equal at all sensing positions.

3.1. Parameter Setting using a Multiple-Point MVDR
Beamformer

The determination of β is important for achieving sparse so-
lution of (10). Due to the application constraints in the pre-
vious approaches [3], [4], [6], a new way of determining β
has to be found for practicality. In this section, we present a
multiple-point MVDR (MP-MVDR) beamformer for the de-
termination of the parameter β.

Let wk,i denote the weight vector of the MP-MVDR
beamformer at the scanning location i and the array sens-
ing position k. Under the uncorrelated assumption for the
sources, the power estimate of the MP-MVDR beamformer
is formulated as follows:

x̂i =
1

Nk

Nk∑
n=1

∣∣∣ K∑
k=1

wH
k,izk(n)

∣∣∣2 =

K∑
k=1

wH
k,iRkwk,i (11)

where i = 1, ..., I , the spatial covariance matrix Rk is given
in (3), and the weight vectors wk,i, k = 1, ...,K are chosen to
minimize the output power x̂i by the following linearly con-
strained minimization problem:{

minwk,i

∑K
k=1 w

H
k,iRkwk,i, k = 1, 2, ...,K

s.t.
∑K
k=1 |wH

k,iak(pi)|2 = 1,
(12)

where ak(pi) is given in (2). Let us define αk = wH
k,iak(pi),

then the constrained minimization problem (12) is equivalent

to the following constrained minimization problem

K∑
k=1

(
minwk,i

wH
k,iR̂

(k)wk,i s.t. wH
k,ia

(k)(pi) = αk

)
, (13)

where the constraint on αk is
∑K
k=1 |αk|2 = 1. The con-

strained minimization problem inside the bracket of (13) is
the standard MVDR beamformer and it is straightforward to
obtain

x̂i =

K∑
k=1

α2
k

aHk (pi)R
−1
k ak(pi)

. (14)

The power expression in (14) implies that regardless of the
relative scaling, α2

k, between the various sensing positions,
the optimal solution of the MVDR beamformer should be al-
ways used at each sensing position. The value of αk in (14) is
determined by the following constrained minimization prob-
lem{

minαk

∑K
k=1

α2
k

aH
k (pi)R

−1
k ak(pi)

, k = 1, ...,K

s.t.
∑K
k=1 |αk|2 = 1.

(15)

By the triangle inequality theorem [7], the optimal setting is

αkmin
= 1 and αk 6=kmin

= 0, (16)

where kmin is defined as the sensing position k where the
MVDR beamformer produces the minimum output power for
the scanning location i over all the K sensing positions. Now
we can rewrite the expression (14) as

x̂i = min{x̂i,1, ..., x̂i,K}, (17)

where x̂i,k = 1
aH
k (pi)R

−1
k ak(pi)

, k = 1, ...,K. The power esti-
mate in (17) is the output power of the proposed MP-MVDR
beamformer at the scanning location i. The parameter β in
(10) is therefore set to β =

∑I
i=1 x̂i.

3.2. Realization using DAS and MVDR

We now present the realizations of the GMPSC-DAMAS ap-
proach using the DAS and MVDR beamformers, which is
quite straightforward. When the DAS beamformer is applied,
the weight vector wk,i in (5) has the following form [8]

w
{DAS}
k,i =

1

M

[
ri,k,1e

−jωlri,k,1/c, ..., ri,k,Me
−jωlri,k,M/c

]T
,

(18)
and when the MVDR beamformer is applied, the weight vec-
tor wk,i in (5) has the following form [9]

w
{MVDR}
k,i =

R−1k ak(pi)

aHk (pi)R
−1
k ak(pi)

. (19)

Substituting the weight vectors (18) and (19) in (6), re-
spectively, two different implementations of the GMPSC-
DAMAS approach can be realized and the sparse solutions
will be obtained via readily available interior-point methods
with the free Self-Dual Minimization software package [10].
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Fig. 1. Illustration of the tested scanning region and the noise-
mapping results of MP-MVDR, MPSC-DAMAS, GMPSC-
DAMAS(DAS) and GMPSC-DAMAS(MVDR).

4. EXPERIMENTAL RESULTS

In the simulation setup, we considered a 30m × 20m envi-
ronmental noise region, and the scanning locations were set
on a 1m × 1m grid. There are a total of 600 source lo-
cations as shown in Fig 1. The x-axis was considered as
the horizontal direction and the y-axis was the vertical di-
rection. A circular array consisting of 24 microphones with
a radius of 0.72m was placed at K = 7 locations for data
acquisition. The coordinates of the array sensing locations
were {(0, 10), (5, 10), · · · , (30, 10)} where the heights of the
sources and the array were assumed the same and omitted.
The acoustic sources and the additive noises were synthetic
complex Gaussian zero-mean signals and the frequency of in-
terest was 1kHz. A total of Nk = 1000 FFT segments were
used at each sensing location. For all simulations, the source
positions were randomly generated and the results were aver-
aged over 500 instances. The measured absolute power error
is defined as: 10log{abs(‖x̂‖1 − ‖x‖1)}.

Fig 1 shows the noise-mapping results of the tested al-
gorithms for a setting of 20 noise sources with equal source
power of 85 dB and the signal to noise ratio (SNR) of 35
dB. All algorithms have accurate location estimates and MP-
MVDR has obviously noisy power estimation due to the
convolution effect. Fig 2 shows the absolute power errors
obtained by the four algorithms. The number of sources were
10, 20, 30, and 40 with equal source power of 85 dB and
SNR of 35 dB. It is observed that MP-MVDR has the highest
absolute power errors. The other three algorithms achieve
lower absolute power errors than MP-MVDR. Compared
to MPSC-DAMAS, GMPSC-DAMAS(DAS) and GMPSC-
DAMAS(MVDR) achieve much lower absolute power er-
rors. GMPSC-DAMAS(MVDR) has the lowest errors. Fig
3 shows the results of 20 sources with equal power of 85
dB and SNR ranging from 5 dB to 35 dB. Similar observa-
tions are obtained that GMPSC-DAMAS(DAS) and GMPSC-
DAMAS(MVDR) achieve much lower absolute power er-
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Fig. 2. Absolute power error comparison of noise mapping
with different number of acoustic sources.
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Fig. 3. Absolute power error comparison of noise mapping
with different SNRs.

rors than MPSC-DAMAS, and GMPSC-DAMAS(MVDR)
has the lowest error. The above results also imply that
GMPSC-DAMAS with adaptive beamformers can outper-
form GMPSC-DAMAS with fixed beamformers, and MP-
MVDR works well for the parameter settings. The averaged
computational times were 0.13s for MP-MVDR, 34.76s for
MPSC-DAMAS, 17.28s for GMPSC-DAMAS(DAS), and
16.69s for GMPSC-DAMAS(MVDR) on a 64-bit personal
computer with a 3.0 GHz processor and 10 Gbytes of random
access memory (RAM) running MATLAB.

5. CONCLUSIONS

We have presented a generalized deconvolution approach of
GMPSC-DAMAS for mapping environmental noise sources
in large regions. Two implementations of GMPSC-DAMAS
using DAS and MVDR have been evaluated and achieved
much better power estimation than the previous MPSC-
DAMAS approach. GMPSC-DAMAS has potential robust-
ness to array mismatches with possible implementation of
robust beamformers. Our future work is to evaluate GMPSC-
DAMAS with array mismatches and test on real array data.
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