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ABSTRACT

Adaptive close-talking differential microphone arrays (ACT-
MAs) inherently suppress farfield noise while emphasizing desired
nearfield signals. This paper discusses the applicability of ACT-
MAs for noise reduction in mobile phones. In order to utilizethe
advantages of ACTMAs, we need to improve the robustness to mi-
crophone mismatch and improve parameter estimation accuracy.
In this paper we propose a method to improve the robustness of
the ACTMA algorithm by taking microphone gain mismatch into
account in the detection of background noise and mobile phone user
activity, performing online microphone gain calibration,steering the
null of the ACTMA to the rear of the mobile phone, and perform-
ing parameter estimation only when mobile phone user activity is
detected. Thus, the robust ACTMA is applicable for performing
noise reduction in mobile phones. Experiments with recorded data
demonstrate the effectiveness of this method.

Index Terms— Noise reduction, Adaptive close-talking micro-
phone array, Mobile phone

1. INTRODUCTION

Mobile phones are used for telecommunication in widely differing
acoustic environments. However, if conversations take place in ad-
verse acoustical environments, i.e., high background noise, this may
lead to a significant degradation of speech intelligibilityand listen-
ing comfort for the listener at the far-end [1]. In such scenarios, the
application of noise reduction algorithms [2, 3, 4] that ensure mini-
mal speech distortion is highly desirable. Most of the mobile phones
nowadays have two or more microphones and it has been shown that
the noise reduction performance can be enhanced by exploiting the
additional spatial diversity [1, 4].

In this paper, we discuss the application of adaptive close-talking
differential microphone arrays (ACTMAs) [5, 6] for noise reduction
in mobile phones. A prerequisite for the application of ACTMAs
is the existence of two closely-spaced microphones. A common
microphone configuration found in mobile phones is one in which
there is a microphone at the bottom and another at the top of the mo-
bile phone. Due to the small sizes of the MEMS (MicroElectrical-
Mechanical System) microphones typically used in mobile phones,
it becomes feasible to place an additional microphone at thebottom
of the mobile phone in the configuration depicted in Figure 1.Note
that the axis of the two-element array, consisting of microphonesm1

andm2, is perpendicular to the front of the phone, i.e., the user is
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Fig. 1. Mobile phone illustration with three microphones, i.e., one
at the top and two at the bottom.

typically located at endfire. This configuration is chosen because
higher gain is achieved at endfire [7, 8].

There are two main challenges in the application of the ACT-
MAs in the mobile phone scenario; Microphone mismatches cause
a significant degradation in the performance of the ACTMA algo-
rithm. This necessitates a calibration of the microphones,which
typically cannot be performed offline. In order to ensure thede-
sired signal is not distorted, a correction filter [5] has to be computed
based on the estimated positional information of the mobilephone
user. To ensure sufficient accuracy, the estimation of the positional
information should only occur during speech activity of themobile
phone user. Therefore, a method to detect the presence of speech
from the mobile phone user is required.

In this paper, we show that by exploiting normalized power level
differences (NPLDs) [4], we can overcome these challenges.We
also show that for real measurements, microphone gain mismatches
result in biased NPLDs measurements. We therefore propose the
use of an adaptive threshold to improve robustness. In addition, it is
necessary to steer the null of the ACTMA towards an angular region
which does not overlap with the angular region in which the mobile
phone user is typically found.

2. ACTMA

In the following, the ACTMA [5] is briefly described. Here, we
assume a free-field model and that the mobile phone user’s mouth is
located close to the two microphones while the interfering sources
are assumed to be far away. The ACTMA depicted in Figure 2
constitutes a first-order close-talking differential microphone array
(CTMA), consisting of two closely-spaced omnidirectionalele-
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ments, whose output is processed by an adaptive correction filter.
Here,d is the distance between the microphones andθs is the desired
source’s direction of arrival (DOA).
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Fig. 2. Illustration of first-order ACTMA with a nearby source.

Assuming a spherical wave propagation model for the sourceS,
the frequency-domain microphone signals can be modeled as [5]

Xi(ω) = S(ω)Hi(ω) +Ni(ω)

= S(ω)
e−jωri/c

ri
+Ni(ω), i = 1, 2, (1)

whereS(ω) is the desired speech signal,Hi(ω) is the transfer func-
tion from the desired source to thei-th microphone,Ni(ω) is the
background noise and additive uncorrelated white noise,ω = 2πf ,
andc is the speed of sound.

According to [5], the correction filterW (ω) is computed as the
inverse of the nearfield response of the differential array to the source
S(ω), which is given by

B(r, θs;ω) =
e−jωr1/c

r1
− e−jωr2/c

r2
, (2)

wherer1 and r2 are a function ofr and θs. The correction filter
results in a nominally flat frequency response, thus ensuring the de-
sired signal remains undistorted, without significantly degrading the
noise canceling properties of CTMAs. Since the position of the mo-
bile phone user is unkown, the correction filter is parameterized in
practice by the estimated distancer̃ and angular orientatioñθs of the
mobile phone user’s mouth relative to the array axis. These parame-
ters can be estimated as proposed in [5].

3. STEERED ACTMA

In mobile phone scenarios, the distance and angular orientation of
the mobile phone user relative to the array varies significantly from
user to user. As the null of the ACTMA is fixed at broadside, i.e.,
90◦, the correction filter may cause a significant amplification of the
uncorrelated spatially white noise if the mobile phone user’s angular
positionθs approaches90◦.

To avoid the problem stated above, we propose to use the
steered ACTMA (SACTMA), which is depicted in Figure 3. The
null of the SACTMA is constrained to an angular region in which
the phone user is typically not found by introducing a delay
τ (θnull) = d/c cos θnull in the signal path. The null can be steered
adaptively, e.g., by localizing the dominant interferer during periods
of mobile phone user inactivity while also constraining theestimated
DOA to a predefined angular region ,e.g.,120◦ < θnull ≤ 180◦. In
this paper, the null is fixed at an angle ofθnull = 180◦.

For the SACTMA, we select the desired signal at microphone
m1, i.e., Ŝ(ω) = S(ω) exp(−jωr1/c)/r1, as our reference. We
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Y (ω)

τ(θnull)

Fig. 3. First-order SACTMA.

therefore seek to estimatêS(ω) instead ofS(ω). The inputs to the
SACTMA may then be written as

X1(ω) = Ŝ(ω) +N1(ω), (3)

and

X2(ω) = Ŝ(ω)
r1
r2

e−jω(r2−r1)/c +N2(ω)

= Ŝ(ω)σ12e
−jωτ12 +N2(ω). (4)

In this case the correction filterP (ω) is obtained by computing the
inverse of the response with respect toŜ(ω), which is given by

B̂(r, θs;ω) = 1− σ12e
−jω(τ12+τ(θnull)), (5)

instead of (2).
In order to compute the inverse of (5), we require an estimateof

the distance ratioσ12 and the time-difference of arrival (TDOA)τ12
between the microphones. Similarly to [5], the distance ratio can be
estimated by

σ̃12(κ) = λ1

∑

µ |X2(µ, κ)|
∑

µ |X1(µ, κ)|
+ (1− λ1)σ̃12(κ− 1) (6)

whereλ1 is a smoothing parameter. The discrete frequency bin and
frame index are denoted byµ andκ, respectively. Note that a mis-
match in the microphone gains results in a wrong estimate of the dis-
tance ratio. The TDOAτ12 can be estimated by any one of the var-
ious methods presented in the literature [9, 10]. Here, the TDOA is
estimated by using the Generalized Cross Correlation (GCC)method
[11].

4. ROBUST SACTMA

To ensure sufficient accuracy in the estimation of the parametersσ̃12

and τ̃12, the estimation should only occur during periods when the
mobile phone user is active. In addition, the impact of microphone
mismatch on the SACTMA performance should be minimized.

In this section, we present a robust SACTMA algorithm, which
seeks to overcome these challenges. Figure 4 depicts the block di-
agram of the proposed method. The source signals are captured by
three microphones, i.e.,m1, m2 andm3, and the microphone sig-
nals are subsequently sampled and quantized, and then a filterbank is
applied to obtain the frequency-domain signalsX1(µ, κ), X2(µ, κ)
andX3(µ, κ).

4.1. Near/Far Activity Detector

In order to achieve sufficient parameter estimation accuracy and to
perform online calibration, we require a method to distinguish be-
tween the activity of the mobile phone user and the background
noise.
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Fig. 4. General block diagram of proposed robust SACTMA.

In this section, we consider the near/far activity detector(NFAD)
whose main goal is to distinguish between the presence of speech
coming from the mobile phone user and the presence of background
noise. This may be achieved by computing the NPLD between mi-
crophonesm2 andm3 [4]

Γ (µ, κ) =

∣

∣

∣

∣

Φx2x2(µ, κ) −Φx3x3(µ, κ)

Φx2x2(µ, κ) + Φx3x3(µ, κ)

∣

∣

∣

∣

, (7)

whereΦxixi
(µ, κ) = λ2

∣

∣X2
i (µ, κ)

∣

∣+(1−λ2)Φxixi
(µ, κ−1) are

the power spectral densities (PSDs) estimates ofXi(µ, κ) andλ2 is
a smoothing parameter. It was shown in [4] that the NPLD contains
information related to the proximity of a source with respect to the
mobile phone. Note that0 ≤ Γ (µ, κ) ≤ 1.

When only the background noise sources are active the power
at the microphones is approximately equal andΓ (µ, κ) approaches
zero. When the telephone user is active there is a significantdiffer-
ence in power at the microphones and thereforeΓ (µ, κ) approaches
unity. By applying a threshold to the NPLD, a decisionξ can be
made on whether the telephone user is active or only the background
noise sources are active. This information is subsequentlyused to
control other modules as will be explained shortly.

The NPLD computation in (7) assumes that the gains of the mi-
crophones are matched. Unfortunately this is seldom the case in
practice due to manufacturing tolerances. Actually gain mismatches
introduce a bias into the NPLD computation. Assuming the micro-
phone gains are constant over time, (7) becomes

Γ (µ, κ) =

∣

∣

∣

∣

Φx2x2(µ, κ)− g32(µ)Φx3x3(µ, κ)

Φx2x2(µ, κ) + g32(µ)Φx3x3(µ, κ)

∣

∣

∣

∣

, (8)

whereg32(µ) = g23(µ)/g
2
2(µ) is the ratio of the gains of micro-

phonesm3 andm2, respectively. If the microphones capture back-
ground noise such thatΦx2x2 = Φx3x3 then (8) becomes

Γbg(µ) =
1− g32(µ)

1 + g32(µ)
. (9)

For the algorithm proposed in [4], if the thresholdγmin < Γbg(µ)
this would lead to infrequent updates of the power spectral density
(PSD) estimate and therefore less noise reduction.

Figure 5 depicts an exemplary broadband NPLD computed from
recorded signals. Note that for our purposes, the NPLD averaged
over frequency,̄Γ (κ) = 〈Γ (µ, κ)〉µ, is sufficient for signal classifi-
cation. The signals were recorded at a busy bus stop using a mock-
up mobile phone whose microphones were located as depicted in
Figure 1. The spacing of the microphones at the bottom was 5 mm.
Although high NPLD values occur when the mobile phone user isac-
tive as expected, when only background noise is present the NPLD

is shifted upwards due to microphone mismatch. This behavior was
confirmed by other measurements in different acoustic environments
and using different sets of microphones.

To improve robustness, we propose to track the minima of the
broadband NPLD in order to compute an adaptive threshold, i.e.,
the threshold is set relative to the minimum NPLD. Tracking of the
NPLD minima is performed similarly to the method proposed in
[12]. The main idea is to find the minimum NPLDΓmin within a
predefined number of consecutive frames. The adaptive threshold,
depicted in Figure 5, is given byγamin(κ) = Γmin(κ) + γmin, where
γmin is a fixed threshold.
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Fig. 5. Exemplary NPLD, minimum NPLD, and adaptive threshold.

4.2. Online Gain Calibration

It is well known that microphone mismatch and position errors lead
to a significant degradation in the performance of ACTMAs. In[5]
the authors suggested performing an offline calibration in order to
reduce the microphone mismatch. Although effective, this procedure
is not feasible for mass produced mobile phones.

In this contribution, we propose online gain calibration be-
cause experiments showed that the performance degradationdue to
gain mismatch is significantly greater than due to phase mismatch.
Although gain mismatches are frequency-dependent in practice, a
frequency-independent (broadband) calibration gain is used here.
The gain calibration module computes broadband gains that com-
pensate for microphone gain mismatches, i.e., typically less than
±3dB, between microphonesm1 and m2. The gain calibration
works on the assumption that if only the background noise is active,
the power of the signals at microphonem1 andm2 should be the
same. This is a reasonable assumption as the microphones arevery
close to each other. The broadband calibration gains are computed
as

g12(κ) = λ3
Φ̄x1x1(κ)

Φ̄x2x2(κ)
+ (1− λ3)g12(κ− 1) (10)

if Γ̄ (κ) ≤ γamin(κ), whereΦ̄xixi
(κ) =

∑

µ Φxixi
(µ, κ), λ3 is a

smoothing parameter, andγamin = 0.2 was chosen empirically.

4.3. Robust Parameter Estimation

The accurate estimation of the distance ratioσ12 and the TDOAτ12,
which are used in the computation of the correction filter as was ex-
plained in Section 3, is important as this minimizes the distortion of
the speech from the mobile phone user. If the parameter estimation
were to be performed continuously, this would lead to spurious esti-
mates and a degradation in performance. Additionally, microphone
gain mismatch leads to erroneous distance ratio estimates.

Therefore, the parameter estimation module estimates the
distance ratioσ̃12 and the TDOA τ̃12 betweenX1(µ, κ) and
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X̂2(µ, κ) =
√
g12X2(µ, κ) only when speech activity of the mobile

phone user is detected by the NFAD, i.e., ifΓ̄ (κ) ≥ γamin(κ) + δ,
where the valueδ = 0.4 was chosen empirically.

5. PERFORMANCE EVALUATION

First we compare the performance of the ACTMA and SACTMA al-
gorithms with respect to mobile phone usere’s DOAθs. The perfor-
mance is evaluated using the signal-to-interference-plus-noise ratio
(SINR) gain, which is defined as the ratio of the segmental SINR
at the algorithm’s output w.r.t. the segmental SINR at the reference
microphonem1. The microphone signals were obtained by convolv-
ing audio files with room impulse responses that were generated by
the image method [13] for a room with dimensions 5x5x2.5 m anda
reverberation time of 350 ms. A sampling frequency of 32 kHz and
microphone spacing of 5 mm were chosen. The desired source was
placed at a distance of 7.5 cm from the center of the array. An inter-
ferer was placed at a distance of 2 m at an angle of60◦. Here, we
assume that the DOA and distance of the desired source is known.
Figure 6 depicts the gains of the ACTMA and SACTMA with re-
spect toθs. Clearly, the gain decreases for both methods as the de-
sired source moves towards broadside but the SACTMA has superior
performance.
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Fig. 6. SINR gain of ACTMA and SACTMA with respect to angular
orientation of mobile phone user.

Now we investigate, by way of examples, the effect of broad-
band gain calibration on the algorithmic performance. For this, the
phase and magnitude responses of forty five EPCOS C914G MEMS
microphones were used. The response for microphonem1 was com-
puted from mean magnitude and phase responses, i.e.,H1(µ) =
ḡr(µ) exp(jωµφ̄r(µ)). The response of the other microphonesi =
2, 3 were obtained as the realization of a Monte Carlo experiment
with Gaussian distributions for amplitude and phase:

Hi,q(µ) =

(

ḡr(µ) +
σm(µ)

σm(µ0)
∆gi,q

)

e
−jωµ

(

φ̄r(µ)+
σp(µ)

σp(µ0)
∆φi,q

)

(11)
whereq is one ofQ realizations,σm(µ) is the measured standard
deviation for binµ, andσm(µ0) is the measured standard deviation
for an arbitrary reference binµ0 (here the bin corresponds to 1 kHz).
∆gi,q and∆φi,q are the zero-mean Gaussian distributed magnitude
and phase errors with a variance ofσ2

m andσ2
p , respectively.

Figure 7 illustrates the improvement in SINR obtained from the
online gain calibration compared to the uncalibrated case.The re-
sults were obtained by averaging twenty realizations for each chosen
variance pair(σ2

m, σ
2
p ). It is clear that the application of gain calibra-

tion improves the performance of the algorithm significantly, up to
almost 3 dB. It should be noted that for very small gain deviations of
less than 0.01 dB , the broadband gain calibration leads to minimal
performance degradation. Further improvement might be achieved
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Fig. 7. Robust SACTMA SINR gain improvement due to broadband
gain calibration.

by performing frequency dependent gain calibration, whichis a topic
of future research.

Finally we evaluate the performance of the robust SACTMA for
real recordings. Figure 8 depicts the input PSD of the signalrecorded
by microphonem1 and the output PSD the robust SACTMA for real
recordings performed at a busy bus stop (see Section 4.1 for further
details). Note that the DOA and distance of the desired source to the
array are unknown and have to be estimated in this case. It is clear
that robust SACTMA achieves significant background noise reduc-
tion. The residual noise at low frequencies is predominantly spatially
white noise. This residual noise can be reduced significantly by ap-
plying single-channel noise reduction [3] as a postprocessing step to
further reduce residual noise.
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Fig. 8. Robust SACTMA input and output PSDs.
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7. CONCLUSIONS

In this paper we have proposed a method that improves the robust-
ness of the ACTMA algorithm by performing robust parameter es-
timation and online calibration. We also showed that it is necessary
to take the microphone gain mismatch into account when usingthe
NPLD for signal classification. Experimental results confirmed the
applicability of robust SACTMA for performing noise reduction in
mobile phones.
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