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ABSTRACT

Broad areal coverage and low cost make wireless sensor networks
natural platforms for blind source separation (BSS). In this context,
distributed processing is attractive because of low power require-
ments and scalability. However, existing distributed BSS algorithms
either require a fully connected pattern of connectivity or require a
high computational load at each sensor node. We introduce a dis-
tributed robust BSS algorithm that uses a fully shared computation
and can be applied over any connected graph. This enables us to
facilitate a low computational load at each node as well as low data
transmission rates. Comparative experimental results confirm the ef-
fectiveness of the new method.

Index Terms— Distributed Processing, Blind Source Separa-
tion, Sparse, Network, Bi-ADMM

1. INTRODUCTION

Communication is performed by transmitting signals, such as acous-
tic signals and radio signals, through a medium. It is common that
signals originating from different sources are mixed in the transport
medium before they are received. Hence, there is a need to extract
the original source signals from a mixture of such source signals.
The operation of separating source signals without prior information
about the sources is referred to as blind source separation (BSS),
e.g., [1].

Wireless sensor networks (WSN) are a rapidly developing tech-
nology, e.g., [2], and they form a natural platform for effective, low-
cost BSS. In contrast to wired networks of sensors, WSNs facilitate
a good coverage of an area where signals of interest are present at a
low deployment cost.

In the context of sensor networks, research on blind source sepa-
ration can be divided into centralized and de-centralized approaches.
In centralized approaches, e.g., [3, 4], the recordings of all sensors
(microphones) are transmitted to a centralized processor, the fusion
center, to perform the separation procedure. Drawbacks of the cen-
tralized approach include the lack of scalability, high power con-
sumption of the transmission and the need for hardware that can
transmit over long distances [5].

De-centralized, in-network, processing approaches have the po-
tential to be scalable and have a low power consumption [6, 7]. A
simple form of decentralized BSS was discussed in [8, 9], where the
separation procedure is pararallelized over a number of processors.
However, the methods in [8, 9] retain the need to aggregate the ob-
servations of all sensors in each individual node. This imposes the
need for a full connectivity pattern over the graph of the network
and, hence, restricts the scalability of the BSS algorithm. A more
scalable distributed algorithm is introduced in [10], but at the cost of
a significantly higher computational load at each node.

In this paper, we implement a distributed form of a suitable BSS
algorithm. The BSS algorithm is based on [11] with an extension
based on [12]. A motivation for using an algorithm based on [11] is
that it can handle both over-determined and under-determined cases
(for the under-determined case regularization must be added). The
extension based on [12] enables the BSS algorithm to be stable in
situations where the number of sources is over-estimated.

Our distributed BSS algorithm consists of two steps for each
time sample. In the first step it solves a constrained convex optimiza-
tion problem to estimate the sources given the current observations
and the current estimate of the mixing matrix. The objective func-
tion of the optimization problem forms a sum ofN convex functions,
each associated with an individual node of the network. In the sec-
ond step, the mixing matrix is updated given the observation and the
newly estimated sources. The second step is local and requires no
communication across the nodes. The proposed distributed process-
ing strategy enables the algorithm to be implemented on connected
graphs of any connectivity pattern.

When our distributed BSS algorithm is applied for a well de-
signed sparse network, its energy requirement for data transmission
is low. An appropriate selection of the connections means that no
transmission over long distances is required.

We consider the scenario in which each sensor node computes
estimates of all source signals. Hence any node can send a source
signal to its user. The new algorithm is particularly efficient if there
are a low number of sources while there are higher number of sensor
nodes.

We confirm the strong performance of the new distributed BSS
with experiments for the case of delay-restricted (non-echoic) envi-
ronments where the observations are obtained from the linear instan-
taneous mixture of the sources. The method is easily extended to ap-
ply to convolutional scenarios using conventional frequency domain
approaches.

The remainder of this paper is organized as follows. In section
2 we formulate the linear BSS problem and introduce a suitable on-
line learning algorithm to solve this problem. In section 3 we explain
the proposed distributed solution. The evaluation of the proposed
distributed-processing BSS algorithm is presented in section 4. It is
followed by a conclusion in section 5.

2. LINEAR BLIND SOURCE SEPARATION

In this section, we describe the centralized algorithm that forms a
suitable basis for a distributed BSS. The algorithm is aimed at low
noise conditions and optimizes the mixing matrix to maximize the
likelihood of the observed data. It is based on a linear generative
model:

bN×1(t) = AN×MsM×1(t) + nN×1(t), t = 1, ..., T, (1)
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whereN is the number of microphones,M is the number of sources,
s(t) and b(t) contain the sources and observed data at time index t
respectively, n(t) is a zero mean Gaussian noise andA is the mixing
matrix.

A likelihood function for the mixing matrix can be written as
[11]:

p(b|A) =

∫
p(b|s,A) p(s)ds. (2)

In [11] a Gaussian p(b|s,A) and a fully factorizable prior Laplacian
model p(s) are used. The Laplacianity of the prior makes the integral
in (2) intractable. Hence an approximation of the logarithm of (2) is
used as the objective function. The gradient ascent technique can
then be used for the optimization. In [11] the natural gradient [13]
ascent is used:

4A ∝ AAT ∂

∂A
log p(b|A)

or A(t+ 1) = A(t)− µA(t)F [y(t)],
(3)

where F [y(t)] = I − ψ[y(t)]y(t)T , y(t) = A−1(t)b(t) describes
the estimated source signals at time index t, and ψ is the Marginal
Score Function (MSF) defined as:

ψ[y] = [ψ1[y1], ..., ψM [yM ]]T

ψi[yi] = − d

dyi
ln p(yi).

(4)

For prior Laplacian models, ψi[yi] reduces to sign[yi].
In the case of zero noise and N = M , (3) has been shown to

have the same performance as the standard independent-component
analysis (ICA) algorithm [14].

As there is no exact information about the variance of the source
signals, the identity matrix is used as a prior assumption over the
covariance matrix of the sources. This leads to instability if fewer
sources than allowed for are present. To eliminate this problem the
identity matrix is substituted with a dynamic matrix Λ in [12]:

F [y(t)] = Λ(t)− ψ[y(t)]y(t)T , (5)

where Λ(t) = diag[diag[ψ[y(t)]y(t)T ]]. This means that F [y(t)]
has a zero diagonal. In practice, (5) preserves the stability of the
algorithm (3) when the number of sources is set too high. In the
common situation where the number of sources is unknown a-priori,
we can now allocate a source vector of relatively high dimensionM .
The algorithm will then extract up to M source signals if there are
at least M sensor nodes in the network.

Algorithm 1 outlines the centralized processing version of our
desired on-line linear BSS algorithm method for the case that N ≥
M . A+ denotes the pseudo-inverse of A.

Algorithm 1 An on-line centralized linear BSS Algorithm for a time
sequence of T time samples. The algorithm updates the matrix A(t)
at each time sample t.

Initialize A
for t = 1, ..., T do

y(t) = A+(t)b(t)
A(t+ 1) = A(t)− µA(t)(Λ(t)− ψ[y(t)]y(t)T )

end for

3. DISTRIBUTED PROCESSING APPROACH

In this section we discuss the distributed implementation of the al-
gorithm outlined in section 2. First we introduce two different dis-
tributed algorithms that can be used for the first step of each iteration
in section 3.1. This is followed by a description of the distributed
implementation of the second step of the iteration in section 3.2.

3.1. Distributed processing of source estimation

The first iteration step of the Algorithm 1 estimates the source sig-
nals given the model parameters. That is, we have a model A(t) and
the observations b(t) at time index t and want to find y(t). We con-
sider two different distributed processing solutions for this step: one
of these benefits from a fusion center and the other does not.

3.1.1. Fusion-center (ADMM) approach

If A(t) and b(t) in (1) are known, then finding the estimate y(t) of
s(t) can be formulated as the problem of finding the y(t) that mini-
mizes 1

2
‖A(t)y(t)− b(t)‖22. We can split this objective function on

a row-by-row basis by writing fi(y{i}) = 1
2
‖Ai(t)y{i} − bi(t)‖22,

where Ai and bi are the ith row of A and b respectively. The opti-
mization problem can now be written as:

min
y

N∑
i=1

fi(y
{i}) s.t. y{i} − z = 0 for i = 1, ..., N, (6)

where z ∈ {(y{1}, ..., y{N})|y{1} = y{2} = ... = y{N}}.
The augmented Lagrangian function of the problem above can

be written as:

L(y, z, u) =

N∑
i=1

{fi(y{i}) +
ρ

2
||y{i} − z + ui||22} (7)

Making use of the augmented Lagrangian in (7), the problem (6) can
be solved by the well-known alternating direction method of multi-
pliers (ADMM) [15, 16, 17] as follows:

y{i,k+1} = arg min
y{i}

(fi(y
{i}) +

ρ

2
||y{i} − zk + uki ||22)

zk+1 =
1

N

N∑
i=1

(y{i,k+1} + uki )

uk+1
i = uki + y{i,k+1} − zk+1.

(8)

The standard ADMM algorithm gathers the ui and y{i} in the fusion
node, calculates the average, and then broadcasts the results to each
node of the network, all at each iteration of the ADMM algorithm.
The left side of Fig. 1 shows an example graph of this fusion-center
based approach.

3.1.2. De-centralized approach

To avoid the need for a fusion center, we can also use fully dis-
tributed optimization algorithms such as the distributed ADMM al-
gorithm [18, 19, 20], or the Bi-ADMM algorithm [21], to find the
y(t) that minimizes 1

2
‖A(t)y(t) − b(t)‖22. We use the Bi-ADMM

algorithm as example because of its superior convergence properties.
The Bi-ADMM algorithm for a graphical model G=(ν, ε) with

|ν| = N solves problems of the form:

min
y

∑
i∈ν

fi(y
{i}) s.t.Bi→jy{i} +Bj→iy

{j} = cij ∀(i, j) ∈ ε

(9)
where Bi→j and Bj→i specify linear constraints.

According to [21], the augmented primal-dual Lagrangian func-
tion of the problem (9) can be written as:

LP (y, λ) =
∑
i∈ν

[fi(y
{i})−

∑
j∈N(i)

λTj|i(Bi→jy
{i})− f∗i (BTi λi)]

+
∑

(i,j)∈ε

(
1

2
||y{i} − y{j}||22 −

1

2
||λi|j − λj|i||22)

(10)
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Fig. 1. Illustration of the connectivity patterns. Left: Fusion-center
approach. Right: De-centralized approach.

where f∗(.) is the conjugate function of f(.), λi|j is the variable
which is held in node i and is related to node j and BTi λi =∑
j∈N(i)B

T
i→jλi|j .

If there is a solution y∗ for the problem (9), there will be a λ∗

such that (y∗, λ∗) is the saddle point of the augmented primal-dual
Lagrangian function (10). Consequently the solution of the problem
(9) can be obtained through the following optimization problem:

(y∗, λ∗) = arg min
y

max
λ

LP (y, λ) (11)

For our BSS problem we define the fi(y{i}) as in section 3.1.1 and
seek a consensus (equality) for y{i}, i = 1, ..., N , which is enacted
by setting Bi→j = −Bj→i = IM , where IM is the identity matrix
of size M , and cij = 0.

For our case the Bi-ADMM algorithm leads to the following
updates:

y{i,k+1} =arg min
y{i}

[
∑

j∈N(i)

1

2
||y{i} − y{j,k}||22

− y{i}
T

(
∑

j∈N(i)

sign(i− j)λkj|i) + fi(y
{i})]

λk+1
i|j =λkj|i + sign(i− j)(y{j,k} − y{i,k+1})

(12)

where the dual variable λi|j is held in node i and is related to node j
and N(i) indicates the neighbours of node i.

Both synchronous and asynchronous updates schemes can be
used to implement (12). BiADMM converges at a rate of O(1/k)
regardless of the graph topology. The right side of Fig. 1 shows an
example graph for the de-centralized approach.

3.2. Distributed processing of the parameter update

The second step performed at each time sample by our distributed
BSS algorithm updates the mixing matrix A. Using again the sep-
arated structure introduced in section 3.1, we treat y{i}(t), Ai(t)
and bi(t) as the data that are owned by the node i. We then use the
mixing matrix update scheme of section 2, which can be carried in
parallel on all nodes without the necessity for communications be-
tween the nodes; all required data are available at each individual
node. Each node performs the following operation:

Ai(t+ 1) = Ai(t)− µAi(t)F [y{i,k}(t)], (13)

where F [y{i,k}(t)] = Λ(t) − ψ[y{i,k}(t)]y{i,k}(t)T and Λ(t) =

diagdiag[[ψ[y{i,k}(t)]y{i,k}(t)T ]].
This completes the algorithm. The entire algorithm is outlined

in Algorithm 2 for the Bi-ADMM case. For the ADMM case the
inner loop is replaced by the ADMM algorithm.

Algorithm 2 On-line distributed linear BSS Algorithm for a time se-
quence of T time samples. At each time t, the algorithm estimates
the source samples as the consensus of y{i} given A(t) and obser-
vations b(t), and then updates the demixing matrix A(t).

Initialize Ai, i ∈ ν
for t = 1, ..., T do

Initialize y{i,1}(t) = 0, λ1
i|j = 0 ∀i, j ∈ ν, k ← 1

while the stopping criteria is not met [in parallel] do
y{i,k+1}(t) =arg min

y{i}
[

∑
j∈N(i)

1
2
||y{i} − y{j,k}(t)||2

−y{i}T (
∑

j∈N(i)

sign(i− j)λkj|i) + fi(y
{i})]

λk+1
i|j = λkj|i + sign(i− j)(y{j,k}(t)− y{i,k+1}(t))

k ← k + 1
end while
for all i ∈ ν [in parallel] do

Ai(t+ 1) = Ai(t)− µAi(t)F [y{i,k−1}(t)]
end for

end for

4. EXPERIMENTAL RESULTS

To evaluate the performance of the fusion-center and fully dis-
tributed linear BSS algorithms, we implemented them for graphs of
25 nodes with the connectivity pattern shown in Fig. 1.

4.1. Experimental Setup

We considered two human speech signals of 6.687 seconds in length
as the original source signals. The signals were sampled at fs =
16KHz. Each node observed a linear instantaneous mixture of the
sources through a mixing matrix A25×2 with elements that were
samples from a uniform distribution.

The initial values for the elements of A were obtained by sam-
pling from a normal distribution with zero mean and unit variance.
To maximize processing speed, we used only synchronous updating
in our experiments. The value for µ for updating the mixing matrix
A was set to 0.02. For the ADMM algorithm, the penalty parameter
ρ was set to 1 and u1

i and z1 were initialized with zero. We used
100 iterations for source estimation at each time index t for both
approaches.

To assess the ability of the proposed de-centralized approach
in source signal separation when the number of sources is over-
estimated, we allocated a source vector of size 4 and considered a
matrix A with dimensionality of 25× 4.

4.2. Required output power

A major issue in a WSN is the transmission power consumed. Ac-
cording to [22], the required RF output power for a reliable trans-
mission between the nodes of the wireless sensor network is

PTx(d) = εdα (14)

where d is the range of transmission, ε is a constant that is de-
termined by the characteristics of the transmitting and receiving

Table 1. The required RF output power in Watt for different target
MSEs.

MSE 1× 10−3 4× 10−4 1× 10−4 4× 10−5

De-centralized 375ε 775ε 1575ε 2075ε
Fusion-center 2052ε 4428ε 7884ε 10152ε

3173



antennas and α is the path-loss exponent, which is about 2 for
free space. Equation (14) allows us to compare the required power
for data transmission when using the aforementioned approaches
(fusion-center & de-centralized).

Fig. 2. Visualization of the mixture and separated signals. a) First
source signal. b) Second source signal. c) Observed mixture at node
25. d) First separated signal at node 25. e) Second separated signal
at node 25. f) Third separated signal at node 25. g) Forth separated
signal at node 25.

4.3. Results

Both fusion-center and de-centralized approaches are able to sepa-
rate the signals effectively. Fig. 2 shows the original signals as well
as the reconstructed signals at a sample node for the de-centralized
case. As expected, the signals are reconstructed with high accuracy.
The methods perform well when the number of sources is unknown.
Of the four allotted signals available two show a zero output.

We also investigated the rate of convergence at a given time sam-
ple for distributed source estimation. Fig. 3 shows the SNR of the es-
timated signals at time sample 80000 in the utterances (t = 5s). We

used the definition SNRi = 10log10(
||A+(t)b(t)||22

||A+(t)b(t)−y{i,k}(t)||22
). From

Figure 3 we see that the convergence rate of the two approaches are
similar. The fusion-center approach provides a slightly more consis-
tent convergence behaviour across the nodes, which is natural con-
sidering the explicit global averaging step for each iteration.

To check the ability of the proposed approaches in source sep-
aration in noisy observations, we contaminated the observed signal
at each node with a zero mean Gaussian noise where the energy of
the noise was equal across the nodes. Table 2 shows the signal to
interference plus noise ratio (SINR) of the separated signals using
different methodologies and noise variances. As it can be seen from
Table 2, the performance of the distributed approaches is equivalent
to the centralized one. The similiarity in performance is expected
to increase when higher number of iterations is used for distributed
source estimation at each time sample. The latter is the consequence
of minimizing the estimation error between distributed approaches
and the centralized one in source estimation. The effective perfor-
mance of the distributed approaches as well as the centralized one in
noisy observations is also dominated by the results in Table 2.

Table 2. Shows the SINR of the separated signals in dB at node 25
for different noise variances σ2

n. S1 and S2 stands for the estimation
of the first source signal and second source signal respectively.

Fusion-center De-centralized Centralized
σ2
n S1 S2 S1 S2 S1 S2
0 43.17 15.23 43.28 15.46 44.07 16.27

2× 10−3 20.40 13.33 20.55 13.64 21.63 14.66
4× 10−3 17.55 10.14 17.74 10.36 18.93 11.27
6× 10−3 16.05 8.04 16.15 8.28 17.22 9.31
8× 10−3 15.02 7.32 15.14 7.56 16.20 8.60

To evaluate the required radio transmission power, we assumed
that the nodes are separated by 1 meter from their neighbours
in free space. The required output power for each iteration of
the de-centralized and fusion-center approaches were estimated
as 25ε and 108ε watts, respectively. Table 1 shows the required
output power for reaching the listed target MSEs at time sam-
ple 80000 for the two approaches (with the definition MSE =
1
N

∑N
i=1 ||A

+(t)b(t)− y{i,k}(t)||22). From Table 1 we see that
for reaching to a target MSE, the fusion-center approach consumes
significantly higher power in comparison with the de-centralized
one.

Fig. 3. Comparative performance of fusion-center approach and de-
centralized approach in distributed source estimation at time t = 5s.
Top) De-centralized approach. Bottom) Fusion-center approach.

5. CONCLUSION

We introduced two distributed on-line linear blind source separation
algorithms. The de-centralized version of the proposed algorithms
benefits from a fully shared computation and can be implemented
over any connected graph with any connectivity patterns. Although
the fusion-center approach provides a more consistent convergence
behaviour for source estimation, it consumes more power in com-
parison with the de-centralized approach. In terms of scalability,
the de-centralized approach also outperforms the fusion-center ap-
proach.
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