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ABSTRACT 

 

This paper presents our new results on lucky ranging 

utilizing a towed array in environments subject to unknown 

fluctuating spatial coherence losses. We derive a lucky 

maximum likelihood range estimator based on the 

probabilistic assumption that each collected data snapshot is 

either coherent or purely incoherent with some probability. 

Our lucky range estimator can be interpreted as first ranking 

the coherence quality of each data snapshot according to an 

array gain-like quantity during the parameter search, 

followed by accumulation of likelihood surfaces out of data 

snapshots of high spatial-coherence.  This effectively avoids 

the wash-out or the smearing results encountered in the 

traditional processing procedures of utilizing a long 

integration time without a prior screening for the data 

spatial-coherence. An important advantage of the lucky 

approach is that it makes no prior assumptions about the 

signal spatial coherence loss model. This estimator has 

greatly improved robustness over the conventional estimator 

when coherence is low and time-varying. 

Index Terms— Array Signal Processing, Passive 

Ranging, Spatial Coherence, Passive Sonar, Underwater 

Acoustics 

 

1. INTRODUCTION 

 

Utilizing a long array or a field of distributed sensors, a 

passive sonar system can estimate the range to a distant 

source by measuring its wave front curvature based on the 

assumption of spherical spreading [1]. This is due to the fact 

that under an ideal environment a distributed array of large 

aperture can sense the wave front curvature and hence can 

estimate the location (range and bearings) of an emission 

source. However, estimation of range in real underwater 

environments is often problematic because wave front 

curvature (WFC) ranging is highly sensitive to spatial 

coherence losses or equivalently, wave front distortions. 

Spatial coherence losses can result in large range estimation 

errors and biases and are usually of greater importance in 

WFC ranging systems than signal-to-noise ratio. These 

coherence losses are a consequence of wave front distortions 

induced by space and time-dependent fluctuations in the 

water temperature and hence sound speed from phenomena 

like internal waves, fronts, and random medium effects. One 

solution is to try explicitly incorporate a model of the spatial 

coherence losses into the maximum likelihood estimator to 

improve performance [2, 3, 4]. Along this line, we also 

developed different, non-coherent as well as coherent, 

solutions for passive ranging during the past few years [5, 

6]. Applying such wide sense stationary (WSS) results to a 

real system in practice still faces challenges because the 

spatial coherence loss characteristics are usually time-

varying and not known beforehand. 

The possibility that the spatial coherence may actually 

fluctuate in ocean environments over short time scales, say 

even during the algorithm integration time, is typically 

ignored by array and distributed sensor algorithm designers. 

When testing solutions on real data sets, we often saw rapid 

variations in spatial coherence and consequently poor range 

estimation. Such non-stationary degradation in spatial 

coherence on distributed arrays, caused by wave front 

distortions, bears similarity to the atmospheric turbulence 

present in ground based telescopes that causes blurring of 

planets, stars, and galaxies. Astronomers have observed that 

if telescope images are recorded at fast enough frame rates, 

the atmospheric turbulence-induced blurring fluctuations 

become frozen and that in a few percent of images the 

blurring is momentarily small enough to yield high quality 

images [7]. This is the premise behind lucky imaging. By 

selecting the best images and combining them, an image can 

be generated that has much higher resolution than the normal 

seeing-limited image without resorting to expensive adaptive 

optics [7].     

Motivated by the lucky imaging technique [7] used to 

overcome atmospheric turbulence in adaptive optics and/or 

ground-based telescopes in astronomy, in this work we 

propose a new paradigm for wavefront curvature range 

estimation and array processing in underwater environments 

subject to unknown and time-varying spatial coherence loss. 

Empirical evidence from real world underwater acoustic 

data analysis suggests that even in environments with 

apparently low spatial coherence, when the non-stationary 

data is analyzed at a much finer time scales, there are brief 

moments (a.k.a. lucky moments) when the wave front has 
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little distortion. That is, rather than assuming a specific 

stochastic model for the spatial coherence for the whole data 

set, we simply assume that each short data frame is either 

good (with fully spatial coherent) or bad (with spatial 

coherence lost). In figure 1, we provide an illustration on the 

time-varying wavefront distortions using a sequences of 

simulated wavefronts from turbulence induced variations in 

water temperature. If these lucky moments can be detected, 

they can be utilized to estimate range more accurately, 

hence, to overcome coherence loss degradations typically 

experienced over long integration times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Propagating wavefronts experience time-varying 

distortion due to the turbulence effect, resulting lucky as 

well as unlucky moments.   

2. DATA FORMULATION FOR LUCKY MLE 

 

To properly model the time-vary spatial coherence loss, we 

first introduce a probabilistic assumption that each collected 

data snapshot is either coherent, i.e., rank-1, or purely 

incoherent consisting of IID noise with some probability. 

Specifically, the received snapshot comprised of signal and 

noise, krkk nsAx


 , , in a given kth time frame, is 

assumed as either being fully coherent with probability   or 

incoherent (i.e., converted to IID noise spatially) with 

probability 1 . Under the complex Gaussian assumption, 

we have come up with the following mixture distribution 

data model, 
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model the received array data snapshot kx


 under two 

extreme cases of spatial coherence, respectively. The vector 
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 stands for array’s steering vector towards the source of 

interest at the location ),( r . Note that data vector has zero-
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Due to the passive nature of system and data, the source 

information is embedded in the data covariance matrix.  In 

the above distribution model we made further assumption: 

the total power from the received data perceived by the 

sensing array,   222

nsk NxE  


, remains to be the 

same, no matter whether or not the wave-front is coherent. In 

addition, the N dimensional steering vector is assumed to 

be normalized 1, rs


. Given K frames of IID data, this 

model leads to a mixture-based maximum likelihood 

estimator (MLE) of the form, 
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3. INTERPRETATION OF THE LUCKY MLE 

 

To provide further simplifications as well as in-depth 

understandings on the MLE results in (3), let us exam some 

extreme cases of practical importance.  In perfectly coherent 

environments ( 1 ), this estimator becomes the 

conventional near-field beamformer as follows,  
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However, in environments with high SNR but poor chance 

of coherence, i.e., large SNR but small , it becomes,  

 

 

                                                                                                                                                       

 

 

 

 

 

 

 

 

Recall our previous normalization assumption 1, rs


, the 

exponentiation operation term in the above lucky MLE is 

actually connected to the spatial coherence, 
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  is simply 

the magnitude squared coherence [9, 10] between the kth  

data snapshot perceived by an array of sensors and the 

array’s steering vector towards the source of interest. 

Therefore, the exponentiation operation non-linearly 

enhances the range-bearing surface contributions from 

snapshots with strong focusing, i.e., coherence, while 

suppressing ones with poor focusing, i.e., no coherence. 

Consequently, the lucky range estimator can be interpreted 

as first ranking the coherence quality of each data snapshot 

according to an array gain-like quantity during the parameter 

search, followed by accumulation of likelihood surfaces out 

of data snapshots of high spatial-coherence.  An important 

advantage of the lucky approach is that it makes no prior 

assumptions about the signal spatial coherence loss model. 

Without the knowledge of background noise power, we can 

translate the exponentiation term to an array-gain related 

quantity, k

H

kk

H

r xxxs



2

, , by ranking the array output 

power (when its input is properly normalized). In doing so, 

we can identify lucky moments for the task of lucky ranging.  

The above practice can be justified from the following 

analysis by noticing the fact that, 
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Using Jensen’s inequality, we have,  

 

  
0for )},1)(1(exp{

1for )},1(exp{

exp

SNR

2

2

,






































 









N

N

xxxs
E

n

k

H

kk

H

r



 

Therefore, one can see that under the operation condition of 

a decent SNR, 1SNR  , on average the contribution of 

the exponentiation terms k ’s to the likelihood function in 

the lucky MLE from  a low spatial-coherence data frame is 

significantly smaller than that from a high spatial-coherence 

data frame.   This justifies our proposed lucky ranging 

procedure of ranking the frame-based likelihood surface 

according to the estimated spatial coherence based on an 

array gain-like quantity and only keep the significant terms.  

 

4. CONNECTION TO THE KULLBACK-LEIBLER 

DIVERGENCE FOR COHERENCE TEST 

 

It is interesting for us to point out an important observation 

that the above MLE based results can also be derived from 

the information theoretical perspective. In an effort to 

discriminate two different probability density functions (pdfs 

parameterized by ) characterizing the presence or absence 

of spatial-coherence in data, i.e.,  coherence present with a 

pdf )0;(),;( 1   xprxp


 versus coherence absent 

with a pdf )0;()( 0  xpxp


, a commonly used 

measure for such a task is the well-known Kullback-Leibler 

(KL) divergence [8]. For a given data vector x


 with two 

possible pdfs, the KL divergence is defined as,  
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Now, the task of coherence detection can be cast as 

maximizing the estimated KL divergence based on the given 

K IID data vectors/frames from population )0;(1 xp


.  

Therefore, for the KL divergence test with respect to the 

baseline pdf )0;(0 xp


, we adopt a sample-mean 

estimator (to replace the ensemble mean) as the estimated 

KL divergence, as follows,    
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.    (4) 

Hence, if the spatial-coherence is present due to the emission 

source, we can estimate its location by maximizing the 

above estimated KL divergence in the range-bearing space. 

That is,   
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, (5) 

which is equivalent to the MLE results in equations (2-3).  

 

5. SIMULATION EXAMPLES 

 

To illustrate the effective of the proposed lucky MLE for 

passive ranging application, we include some results from a 

computer simulated example in the following figure.  In the 

fig.2, we show two range-bearing results, one from the 

conventional beamforming (CBF) processing and another 

from the lucky MLE solution, respectively. In the 

simulation, the chance of getting fully coherent data frame is 

set as 27%, that is .27.0  In the conventional 

processing, we utilize a long integration time for the cross-

spectral density matrices (CSDM) calculation, the smearing 

results in the integrated likelihood function (shown by the 

range-bearing plot) can be seen from the top figure. While 

with the lucky MLE, only the spatially coherent data frames 

of proper integration time are retained (through the 

coherence ranking and selection), a sharp peak can be seen 

with much reduced smearing effect in the range-bearing plot.  

 

It should be pointed out that for passive ranging application, 

in order to obtain un-ambiguous range estimate, CSDM from 

multiple frequency bins with reasonable signal strength and 

high levels of spatial coherence need to be identified and 

utilized with a similar procedure as outlined in the lucky 

MLE above.  

 
 

Fig. 2: Comparison of range-bearing results between a 

conventional array beamforming based approach and the 

lucky MLE based solution. The top figure shows range-

bearing scan results using a conventional beamforming while 

the bottom figure shows the scan results using a lucky 

beamforming algorithm. The true location (range and 

bearing) of the emission source of interest is marked by a 

white cross. 

  

6. CONCLUSIONS 

 

To address the practical issue of non-stationary spatial 

coherence loss and to improve the performance of the WFC 

based passive ranging in underwater acoustic environments, 

we derived a lucky maximum likelihood estimate (MLE) 

based on a probabilistic model on the data quality in terms 

of spatial coherence. The exponentiation operation in the 

proposed lucky MLE automatically weights and accumulates 

data snapshots according to a spatial coherence measure. 

This can be translate into a practical procedure of first 

ranking data quality according to the array-gain like quantity 

in the estimation stage, followed by the accumulation of 

likelihood surfaces out of data snapshots of high spatial-

coherence. By casting the problem as a hypothesis test for 

discriminating the case of spatial coherence present against 

the case of spatial coherence absent, we established an 

equivalence between the lucky MLE and the Kullback-

Leibler (KL) divergence. We also tested our solution on real 

underwater acoustic data collected. Some illustrative 

simulation results are included to demonstrate the 

effectiveness of the MLE in reducing the smearing effect in 

range-bearing plots. 
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