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ABSTRACT

In this paper, from the adversary’s point of view, the optimal

strategy to attack a multi-sensor dynamic system is investi-

gated. It is assumed that the system can perfectly detect and

remove sensors once they are corrupted by false information

injected by an adversary. The adversary is trying to maximize

the covariance matrix of the system state estimate by the end

of attack period under the constraint that the adversary can

only attack the system a few times over time and over sen-

sors, which leads to an integer programming problem. The

exhaustive search algorithm has a prohibitive complexity and

greedy algorithms are proposed to find the attack strategies.

Examples and numerical results are provided in order to illus-

trate the effectiveness of the proposed attack strategies.

Index Terms— False information attack, optimal attack

strategy, sensor selection, integer programming

1. INTRODUCTION

System state estimation in the presence of an adversary that

injects false information into sensor readings has attracted

much attention in wide application areas, such as target track-

ing with compromised sensors, secure monitoring of dynamic

electric power systems, and radar tracking and detection in

the presence of jammers. This topic has been studied in [1,

2, 3, 4, 5, 6, 7]. In [1], the problem of taking advantage of

the power system configuration to introduce arbitrary bias to

the system without being detected was investigated and in-

spired many researchers to further study false information at-

tacks along this direction. [2] showed the impact of malicious

attacks on real-time electricity market concerning the loca-

tional marginal price and how the attackers can make profit

by manipulating certain values of the measurements. Certain

strategies were also provided to find the optimal single at-

tack vector. The relationship between the attackers and the

control center was discussed in [3], where both the adver-

sary’s attack strategies and the control center’s detection al-

gorithms have been proposed. The data frame attack to make

the system unobservable was formulated as a quadratically

constrained quadratic program problem in [6]. In [7], the re-

lation between a target and a MIMO radar was characterized

as a two-person zero-sum game. However, in the aforemen-

tioned publications, only the problem of static system state

estimation was considered.

Recently, we have investigated the false information at-

tacks and their detection and mitigation strategies in dynamic

systems. In [8], we studied the impact of the injected biases

on a Kalman filter’s estimation performance. In [9, 10], we

found the best strategies for the adversary to design the in-

jected bias noise under a power constraint to maximize the

Kalman filter system’s mean squared error (MSE), and ob-

tained some closed-form results. The optimal Bayesian de-

tector in conjunction with the bad sensor removal mechanism

was obtained in [11] to achieve a robust estimation perfor-

mance in the presence of false information attacks. A zero-

sum game was formulated in [12] to model the relationship

between the attacker and the defender of the system.

In this paper, for a linear dynamic system, we investigate

the adversary’s sparse attack strategies over time, which has

not received much attention in the literature. Some related

publications exist on sensor management [13, 14, 15], where

the problem of arranging the sensors to minimize the covari-

ance of the state estimation error was investigated. This prob-

lem is clearly opposite to the problem we will investigate in

the paper, where the goal for the adversary is to maximize the

Kalman filter’s MSE.

It is supposed that the system defender perfectly de-

tects the attacks and then removes the detected bad sensors.

Knowing this information, the adversary tries to maximize

the Kalman filter’s MSE under a sparsity constraint on the

number of attacks over sensors and over time. The attack

is assumed to be sparse due to the adversary’s limited re-

sources and his/her intention to reduce the chance of being

detected by the system defender. This becomes an integer

programming problem, whose optimal solution is intractable

for a system with a large number of sensors and over a large

number of time steps. Hence, several greedy algorithms are

proposed to find the attack strategies for the adversary when
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the exhaustive search becomes infeasible, which are shown to

find the global optimum in the numerical examples provided

in the paper.

2. SYSTEM MODEL

The discrete-time linear dynamic system can be described as

follows

xk+1 = Fkxk +Gkuk + vk (1)

where Fk is the system state transition matrix, xk is the sys-

tem state vector at time k, uk is a known input vector, Gk is

the input gain matrix, and vk is a zero-mean white Gaussian

process noise with covariance matrix E[vkv
T
k ] = Qk. Let

us assume that M sensors are used by the linear system. The

measurement at time k collected by sensor i is

zk,i = Hk,ixk +wk,i (2)

with Hk,i being the measurement matrix, and wk,i a zero-

mean white Gaussian measurement noise with covariance ma-

trix E[wk,iw
T
k,i] = Rk,i, for i = 1, · · · ,M . We further

assume that the measurement noises are independent across

sensors, i.e. E[wk,iw
T
k,j ] = 0, for i 6= j. The matrices

Fk, Gk, Hk,i, Qk, and Rk,i are assumed to be known with

proper dimensions. For such a linear and Gaussian dynamic

system, the Kalman filter is the optimal state estimator. Based

on these notations and assumptions and using the information

filter form [16] for the Kalman filter, the updated state covari-

ance matrix at time k, denoted as Pk|k, can be obtained as

P−1

k|k = P−1

k|k−1
+

M
∑

i=1

HT
k,iR

−1

k,iHk,i (3)

where Pk|k−1 denotes the state prediction covariance matrix.

3. PROBLEM FORMULATION

In this paper, it is assumed that the system has perfect de-

tection of the existence of the false information, i.e., the at-

tack detector’s probability of false alarm is 0 and probability

of detection is 1. If a sensor is attacked by the false infor-

mation, the system will not use the sensor’s measurement to

conduct the system estimation. The adversary needs to de-

cide when and which sensors to attack under the sparsity con-

straint, which leads to an integer programming problem. It is

assumed that the system has M sensors and the adversary at-

tacks the system from time K +1 to time K +N . The active

sensor set the adversary attacks at time k ∈ {K+1, · · · ,K+
N} is denoted as Ak, 0 ≤ |Ak| ≤ M , and A = ∪Ak,

where | · | is the cardinality of a set and A is the whole sensor

set the adversary attacks over time. The active set Ak is de-

signed in order to maximize the system estimation error under

the sparsity constraint |A| = c. Based on the perfect detec-

tion assumption, if one sensor is attacked at certain time, the

Kalman filter will not use the measurement from that sensor

at that time to perform system state estimation. Set the sen-

sor set D = {s1, ..., sM}, where si denotes the ith sensor.

For each time k ∈ {K + 1, · · · ,K + N}, the inverse of the

updated state covariance matrix is provided as follows

P−1

k|k = P−1

k|k−1
+

∑

i∈D\Ak

HT
k,iR

−1

k,iHk,i (4)

The adversary’s goal is to maximize the system estimation

error PK+N |K+N by the end of the attack, and the problem

can be formulated as follows,

max
A

Φ
(

PK+N |K+N

)

(5)

s.t. |A| = c

where function Φ (·) could be either the trace or the deter-

minant of a matrix and PK+N |K+N is calculated iteratively

using (4). That is to say, a subset is chosen out of the whole

option set so that the objective function is maximized, lead-

ing to the largest estimation error. The optimal solution can

be obtained by using the exhaustive search to enumerate all

the different sensor combinations. For each candidate sensor

combination, N iterations have to be performed to evaluate

the Kalman filter’s covariance matrix over time, and for each

iteration, there are roughly M matrix additions as shown in

(4), leading to a complexity of n = MN . The complexity for

the exhaustive search algorithm is therefore

ϕ1(n) = n
n!

(n− c)!c!
(6)

Concerning the high complexity of the exhaustive search, it

will be infeasible to find the optimal solution as the size of

problem increases. Some suboptimal algorithms, including

sequential forward selection (SFS), sequential backward se-

lection (SBS), and SFS improved by the simplex approach

(SFS-SS) are proposed to find the attack strategies. Interested

readers are referred to [17, 18] for more information about

SFS, SBS, and SFS-SS. The SFS starts with an empty set for

A, and one sensor is added at each iteration, whose elimina-

tion from the system will lead to the maximum MSE. This

process terminates when |A| reaches c. The pseudo code of

the SFS algorithm is provided in Algorithm 1. The complex-

ity of the SFS is provided below

ϕ2(n) = n [n+ (n− 1) + ...+ (n− c+ 1)] (7)

=
2cn2 − c(c− 1)n

2

which has a complexity of O(n2).
SBS solves the problem in the opposite direction. The

SBS starts with a set A containing all the sensors over all the

time steps, and one sensor is reduced at each iteration, whose

addition to the system will lead to the minimum reduction in
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the state estimation’s MSE. This process terminates when |A|
reaches c. The complexity of SBS is O(n3):

ϕ3(n) = n [n+ (n− 1) + ...+ (c+ 1)] (8)

=
n3 + n2 − (c2 + c)n

2

Comparing (8) to (7), it is clear that the SFS is preferable

in terms of computational complexity.

Algorithm 1 Sequential Forward Selection

1: I0=∅

2: ind+ = argmaxind/∈Ik Φ (Ik + ind)
3: update Ik+1 = Ik + ind+

4: k = k + 1
5: if k ≤ c, go to 2

6: end

As for SFS-SS, it tries to improve the suboptimal solution

found by the SFS. SFS-SS works by checking whether replac-

ing a sensor in the active set with a sensor in the inactive set

will increase the system estimation error. The index of ac-

tive set Iinitial achieved from SFS is sorted in the order the

sensors are selected by the SFS. The SFS-SS starts from the

(c − 1)th sensor in the active set and checks whether replac-

ing this sensor with any sensor in the inactive set will increase

the system estimation error. If no improvement is found, the

next sensor in the active set will be checked. Otherwise, the

sensor in the Iinitial is replaced with the sensor found from

the inactive set and the cth sensor is to be checked in the next

iteration. Once the first sensor in Iinitial is checked and no

more improvement is found, the algorithm terminates. The

pseudo code of the SFS-SS is provided in Algorithm 2.

Algorithm 2 Simplex Improved SFS

1: I=Iinitial

2: i = c− 1
3: s+ = argmaxind/∈I Φ (I − i+ ind)
4: if Φ

(

I − i+ s+
)

> Φ (I) then

5: Update I = I − i+ s+, i = c

6: else

7: i = i− 1
8: end if

9: if i > 0, go to 3

10: end

4. NUMERICAL RESULT

Numerical results for a target tracking example are presented

in this section to illustrate the effectiveness of the proposed

suboptimal solutions. Two cases involving position sensors

and position-velocity sensors are presented to show the attack

strategies of the adversary under different sensor configura-

tions.

4.1. System with Position Sensors

For the system with position sensors, the parameters used in

the target tracking example are provided below. The system

has M = 3 position sensors with sampling interval T = 1.

The system input uk = 0. The system state transition matrix

is

F =

[

1 T

0 1

]

(9)

The measurement matrix for each sensor is

H =
[

1 0
]

(10)

The variance of the system process noise is σv = 0.02. The

variances of the measurement noise for the three sensors are

σw1
= 0.2, σw2

= 0.4, and σw3
= 0.5, respectively. The

sparsity constraint for the adversary is c = 5, meaning that the

adversary has to choose 5 spots to attack the system overM =
3 sensors and over N = 6 time steps in order to maximize

the trace of the state covariance matrix by the end of attack

period.

To begin with, SFS is used to find the suboptimal solution.

Table 1 shows the found attack strategy. The numbers shown

in the table denote the order of sensors for the adversary to

attack. The reason why the adversary attacks the first sensor

is Sensor 1 has the smallest measurement variance. Looking

at (4), the second item is a diagonal matrix, with only posi-

tion variance on the diagonal. In order to maximize the trace

of PK+6|K+6, in each iteration, it is better to minimize the

matrix P−1

k|k . The result shows that the adversary attacks Sen-

sor 1 from time K + 3 to time K + 6. The interesting thing

for this method is that it also provides the adversary with an

attack strategy if he/she wants to attack the system less than c

times because of the greedy nature of the SFS. Another obser-

vation is that the attacker tends to attack sensors in the times

near the end, which is due to the “forgetting” property of the

Kalman filter, implying that the sensor data in the past will

become less and less important as time goes on.

For the same parameter setup, different optimization algo-

rithms including the exhaustive search (EXS) are tested, and

the simulation results are shown in Table 2. Tr(·) denotes the

trace operator for a matrix. The number of sensors is 3, the

problem size (MN) is enlarged by increasing the attack time

period from 6 to 20. From Table 2, it is clear that SFS and

SFS-SS have a lower complexity than the SBS and the EXS.

As the size of the problem increases, it will be not feasible

to get the optimal solution using EXS. In this example, all

the approaches can find the global optimum at least when the

EXS is still feasible.

For the case the adversary attacks the system from

K + 1 to K + 10, the results for the optimal attack strat-

egy (10, 1), (9, 1), (8, 1), (10, 2), (7, 1), the strategy to at-

tack backwards (9, 1), (9, 2), (10, 1), (10, 2), (10, 3), and

the strategy to attack the best sensor (10, 1), (9, 1), (8, 1),
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Table 1. Attack Strategy for Position Sensors

T ime/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 5 3 2 1

Sensor 2 4

Sensor 3

Table 2. Performance of Different Algorithms

Alg. Size Time (s) Tr(PK+N|K+N )

18 0.025 0.032

SFS 30 0.067 0.032

60 0.501 0.032

18 0.116 0.032

SBS 30 0.773 0.032

60 10.302 0.032

18 0.026 0.032

SFS-SS 30 0.068 0.032

60 0.532 0.032

18 2.269 0.032

EXS 30 79.383 0.032

60 − −

(7, 1), (6, 1) are shown in Fig. 1, where (k, i) denotes that

the adversary attacks sensor i at the time k. It is clear that

the maximal system estimation error is achieved by using the

optimal attack strategy.
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Fig. 1. Trace of MSE of the system with three sensors

4.2. System with Position and Velocity Sensors

For the system with position and velocity sensors, transition

matrix F and input uk are set the same as in Section 4.1. The

measurement matrix H for each sensor is a 2 × 2 identity

matrix. In this subsection, the determinant of the state co-

variance matrix is used as the objective function. Here we

investigate three cases with different system parameters. In

Case I, we set σv = 0.02, and the correlation coefficients be-

tween position and velocity measurements for the 3 sensors

are ρ1 = 0.5, ρ2 = 0, ρ3 = −0.5, σw1p
= σw1v

= 0.5,

and σw2p
= σw2v

= 0.5, σw3p
= σw3v

= 0.5. Using

SFS, the optimal attack strategy is shown in Table 3. The

first item in (4) is a positive semidefinte matrix with negative

off-diagonal elements. The information from Sensor 3 R−1

3

Table 3. Attack Strategy for Case I

T ime/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 5 2

Sensor 2 4

Sensor 3 3 1

Table 4. Attack Strategy for Case II

T ime/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 4 2

Sensor 2

Sensor 3 5 3 1

will enlarge the diagonal elements and lower the off-diagonal

elements, leading to smaller determinant of Pk|k , so the ad-

versary will attack Sensor 3 first. For Sensors 1 and 2, the

inverse of covariance matrices are R−1

1 =

[

5.3 −2.7
−2.7 5.3

]

and R−1

2
=

[

4 0
0 4

]

. Comparing with Sensor 2, Sensor 1

will make P−1

k|k larger. Thus the adversary will attack Sensor

1 next instead of Sensor 2. In Case II, we set σv = 0.001, all

the other parameters are set the same as in Case I, and the at-

tack strategy is shown in Table 4. From Table 4, it is clear that

as the variance of the state process noise decreases, the adver-

sary will attack the sensors with correlated measurements. In

Case III, we set σw2p
= σw2v

= 0.2, all the other parameters

are set the same as in Case II, and the optimal attack strategy

is shown in Table 5. In this case, instead of attacking the sen-

sors with correlated measurements, the adversary will attack

the sensor with the smallest covariance.

5. CONCLUSION

In this paper, we have studied the problem of optimal sparse

attacks over sensors and over time on a multi-sensor dynamic

system from the adversary’s point of view. By assuming that

the system defender can perfectly detect and remove the sen-

sors attacked by the adversary, this becomes an integer pro-

gramming problem. As the size of the problem increases, it

will be infeasible to find the optimal solution. Different sub-

optimal algorithms: SFS, SBS, and SFS-SS have been stud-

ied and corresponding attack strategies were provided. For

the examples provided in the paper, numerical results showed

that the greedy searches lead to the optimal solution, at least

when the exhaustive search is still feasible.

Table 5. Attack Strategy for Case III

T ime/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1

Sensor 2 5 4 3 2 1

Sensor 3
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