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ABSTRACT

This paper investigates the problem of how to optimize the path of
a single moving own-ship for angle-of-arrival (AOA) target track-
ing in three-dimensional (3D) space. First, a novel 3D pseudolinear
Kalman filter (PLKF) is proposed to reduce computational complex-
ity and to improve stability of an extended Kalman filter solution.
This filter consists of an xy-PLKF and a z-PLKF, transforming the
nonlinear azimuth and elevation angle measurements into pseudolin-
ear models. We show that when the own-ship and target are at the
same height, the z-PLKF will be unbiased. Next, a gradient-descent
path optimization algorithm is developed for the xy-PLKF aiming at
minimizing the trace of the covariance matrix. Then, a grid search
path optimization method is designed for the z-PLKF. Simulation
examples verify the effectiveness of the proposed path optimization
algorithm.

Index Terms— Three-dimensional, angle-of-arrival, pseudolin-
ear Kalman filter, unbiased condition, path optimization.

1. INTRODUCTION

In 3D angle-of-arrival (AOA) target tracking, the objective is to es-
timate the target dynamics from azimuth and elevation angle mea-
surements collected by a moving own-ship or spatially-distributed
sensors [1, 2]. The own-ship can be an aircraft, vehicle, submarine
or any other mobile platform equipped with angle sensors. 3D-AOA
tracking has been widely used in both military and civilian areas
such as missile tracking and vehicle monitoring. In the AOA track-
ing problem, the moving path of the own-ship plays a vital role in
determining target estimation performance [2, 3]. This paper fo-
cuses on the own-ship path optimization based on a 3D pseudolinear
estimator to track a moving target.

To estimate the target dynamics in the 3D space, many estima-
tors have been developed before. A 3D one-step pseudolinear esti-
mator (PLE) with bias compensation strategy was proposed in [4].
As the bias compensation cannot make the estimator unbiased, a 3D
improved weighted instrumental variable estimator was also devel-
oped based on [5]. In [6], another 3D AOA PLE, drawing on [7],
was introduced consisting of an xy-PLE and a z-PLE with bias re-
duction and selective angle measurement strategies. However, as
these are batch estimates, their computational complexity will in-
crease as more measurements are collected. To avoid large com-
putational complexity and to be able to track maneuvering targets,
in [8, 9, 10], a 2D pseudolinear Kalman filter (PLKF) was developed
with better stability than the extended Kalman filter (EKF) [1]. In
this paper, we will extend the 2D PLKF into the 3D space using the
ideas of 3D-PLE developed in [6].

Many different sensor path optimization strategies have been
presented for the AOA target tracking problem. In [11], a gradient-
descent path optimization method was proposed aiming to minimize
the mean-squared-error (MSE) in the 2D plane. By maximizing the
determinant of the Fisher information matrix (FIM), a 2D optimal
sensor trajectory of a single mobile sensor was introduced in [12].
In [2], the 2D gradient-descent method was improved by solving a
nonlinear programming problem over a set of discrete UAV way-
points to comply with geometric constraints. A grid search method
was also introduced to overcome the inaccuracies of the gradient
method. For static target localization, different optimal sensor de-
ployment strategies based on optimizing the FIM in 2D and 3D were
developed in [13], [14] and [15]. However, these methods cannot be
applied directly to moving target tracking.

In this paper, we focus on path optimization for a single moving
own-ship tasked with target tracking in the 3D space. The nonlinear
noisy angle measurements are transformed into pseudolinear mod-
els. First, a 3D PLKF comprised of an xy-PLKF and a z-PLKF is
designed. Next, we find that when the own-ship and target are at the
same height the z-PLKF will be unbiased. Then, a gradient-descent
path optimization algorithm is proposed for the xy-PLKF to mini-
mize its mean squared error (MSE). The optimal z-axis coordinate
for the ownship is determined by a grid search optimization algo-
rithm applied to the z-PLKF. The rest of the paper is organized as
follows. Section 2 is the problem formulation. The detailed 3D-
PLKF algorithm and the unbiasedness condition for the z-PLKF are
introduced in Section 3. The path optimization strategies based on
the xy-PLKF and z-PLKF are presented in Section 4. The effective-
ness of the proposed method is illustrated with simulation examples
in Section 5. Finally, the conclusion is drawn in Section 6.

2. PROBLEM FORMULATION

We consider a single moving own-ship equipped with AOA sensors
tracking a moving target in 3D space. The AOA sensor acquires 3D
angle measurements including an azimuth angle θk and an elevation
angle φk (See Fig. 1). The own-ship location is represented by rk =
[rxk, ryk, rzk]

T with velocities [ṙxk, ṙyk, ṙzk]
T at time k. pk =

[pxk, pyk, pzk]
T denotes the target location and [ṗxk, ṗyk, ṗzk] are

the target velocities.
The ideal (noiseless) angle measurements can be written as:

θk = tan−1 pyk − ryk
pxk − rxk

, −π < θk ≤ π (1a)

φk = tan−1 pzk − rzk
||[pxk, pyk]− [rxk, rky]||

, −π
2
< φk ≤

π

2
(1b)

where || · || means the Euclidean norm and tan−1 is the 4-quadrant
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Fig. 1. Azimuth and elevation measurements in 3D.

arctangent. The noisy measurements are

zk = [θk, φk]
T + [nk,mk]

T (2)

where nk and mk are the additive zero-mean independent Gaussian
noise with the variances σ2

θ and σ2
φ, respectively. In this paper, we

assume the noise variances are constants and ignore the effects of
clutter and/or misdetection. The design of a recursive AOA tracker
addressing these effects will increase the computational complexity
and is outside the scope of the current paper.

The main objective of target tracking is to estimate the target
state by using the 3D angle measurements collected by the moving
own-ship. As the own-ship trajectory affects the final estimate per-
formance significantly, it is important to determine the optimal path
for the own-ship.

3. 3D PSEUDOLINEAR KALMAN FILTER

The relationship between angle measurements and target states is
nonlinear [see (1)]. Pseudolinear Kalman filter (PLKF) [9] has many
advantages in nonlinear target tracking compared with other recur-
sive estimators [8, 9]. A 3D PLKF is developed which has a similar
structure to the 3D PLE in [6].

3.1. The xy pseudolinear Kalman Filter

We define the target state vector in the 2D-projection xy-plane as
ak = [pxk, ṗxk, pyk, ṗyk]

T . The target motion equation can be writ-
ten as

ak+1 = Ukak + uk (3)
where uk is the noise error in the state process [1], T denotes the
constant time interval between discrete-time instants and

Uk =

[
Ak 02×2

02×2 Ak

]
, Ak =

[
1 T
0 1

]
. (4)

Rewriting (1a) similar to [16], the pseudolinear measurement model
is

0 = [− sin θ̃k, cos θ̃k]
(
[pxk, pyk]

T − [rxk, ryk]
T
)
+ dxyk sinnk

(5)
where dxyk = ||[pxk, pyk]T − [rxk, ryk]

T ||. As nk ∼ N (0, σ2
θ),

the pseudolinear noise satisfies
dxyk sinnk ∼ N

(
0, d2xyk

1
2

(
1− e−2σ2

θ

))
[9]. So the measure-

ment noise variance is ek = d2xyk
1
2

(
1− e−2σ2

θ

)
. In the filter cal-

culation, the estimation information at time k − 1 will be used to
calculate the dxyk.

Finally with the kth measurement, the xy pseudolinear Kalman
filter takes the form [17, 18]

ak|k−1 = Uk−1ak−1|k−1 (6a)

Wk|k−1 = Uk−1Wk−1|k−1U
T
k−1 +Mk−1 (6b)

hk = [− sin θ̃k, 0, cos θ̃k, 0] (6c)

ek = ||[p̂xk|k−1, p̂yk|k−1]
T − [rxk, ryk]

T ||2 1
2

(
1− e−2σ2

θ

)
(6d)

kk = Wk|k−1h
T
k (hkWk|k−1h

T
k + ek)

−1 (6e)

yk = hk
(
rxyk − ak|k−1

)
(6f)

ak|k = ak|k−1 + kkyk (6g)
Wk|k = (I − kkhk)Wk|k−1 (6h)

where Wk|k−1 denotes the covariance matrix and Mk−1 is the
model uncertainty covariance matrix [1] that satisfies

Mk−1 =

[
qxBk−1 02×2

02×2 qyBk−1

]
, and Bk−1 =

[
T4

4
T3

2
T3

2
T 2

]
.

(7)

3.2. The z pseudolinear Kalman Filter

Similarly, we define the target z-axis state vector as bk = [pzk, ṗzk]
T

and the target dynamic model satisfies

bk+1 = Gkbk +wk (8)

where wk is the noise error in the state process and

Gk =

[
1 T
0 1

]
. (9)

Equation (1b) can be rewritten as

dxyk tan φ̃k + [1, 0][rzk, ṙzk]
T = [1, 0]bk +

dk

cos φ̃k
sinmk

(10)
where mk ∼ N (0, σ2

φ). The pseudolinear noise is dk
cos φ̃k

sinmk ∼

N
(
0,

d2k
cos2 φk

1
2

(
1− e−2σ2

φ

))
(assume the noise is small) [6]. In

the filter calculation, the estimation [p̂xk|k, p̂yk|k] from the xy-PLKF
will be used in the z-PLKF to calculate the dxyk and dk. Finally, the
z pseudolinear Kalman filter takes the form

bk|k−1 = Gk−1bk−1|k−1 (11a)

Sk|k−1 = Gk−1Sk−1|k−1G
T
k−1 +Nk−1 (11b)

lk = [1, 0] (11c)

d̂xyk = ||[p̂xk|k, p̂yk|k]T − [rxk, ryk]
T || (11d)

fk =
||[p̂xk|k, p̂yk|k, p̂zk|k−1]

T − [rxk, ryk, rzk]
T ||2

2 cos2 φ̃k

(
1− e−2σ2

φ

)
(11e)

tk = Sk|k−1l
T
k (lkSk|k−1l

T
k + fk)

−1 (11f)

ck = d̂xyk tan φ̃k + lk
(
[rzk, ṙzk]

T − bk|k−1

)
(11g)

bk|k = bk|k−1 + tkck (11h)
Sk|k = (I − tklk)Sk|k−1 (11i)

where Nk−1 is the dynamic model uncertainty covariance [1] that
satisfies

Nk−1 = qz
[

T4

4
T3

2
T3

2
T 2

]
. (12)
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Combining the xy-PLKF and z-PLKF, the target state is
[ak|k; bk|k]6×1 and the final covariance matrix becomes[

Wk|k 04×2

02×4 Sk|k

]
6×6

. (13)

3.3. The condition for unbiased z-PLKF

Based on the z-PLKF equations in (10), we define the z-axis pseu-
dolinear measurement as

z
′
k = lkbk + w

′
k (14)

where w
′
k = dk

cos φ̃k
sinmk is the pseudolinear noise. As lk = [1, 0]

is a constant vector, the z-PLKF can be an unbiased estimator theo-
retically [6].

However, the ideal measurement dxyk tan φ̃k+ lk[rzk, ṙzk]
T in

(10) is not available in practical applications because the true dis-
tance dxyk is unknown. Therefore, we can only use the biased esti-
mate d̂xyk from the xy-PLKF. Thus, the pseudolinear measurement
contains a bias ζk determined by the xy-PLKF which is a variable
with unknown distribution. Assume d̂xyk = dxyk + ζk, (14) be-
comes

z
′
k =lk[rzk, ṙzk]

T + dxyk tan φ̃k + ζk tan φ̃k

=lkbk + w
′
k + ζk tan φ̃k.

(15)

The final estimate of z-axis will be biased because ζk is unknown.
From equation (15) we find that when φ̃k equals zero, the bias

from xy-PLKF will be eliminated perfectly.

Lemma: When the elevation angle measurement equals zero, the
z-PLKF will be unbiased.

Proof. When φ̃k = 0, the z-PLKF equations in (11) become

bk|k−1 = Gk−1bk−1|k−1 (16a)

Sk|k−1 = Gk−1Sk−1|k−1G
T
k−1 +Nk−1 (16b)

lk = [1, 0] (16c)

fk =
||[p̂xk|k, p̂yk|k, p̂zk|k−1]

T − [rxk, ryk, rzk]
T ||2

2

(
1− e−2σ2

φ

)
(16d)

tk = Sk|k−1l
T
k (lkSk|k−1l

T
k + fk)

−1 (16e)

ck = lk
(
[rzk, ṙzk]

T − bk|k−1

)
(16f)

bk|k = bk|k−1 + tkck (16g)
Sk|k = (I − tklk)Sk|k−1. (16h)

The new z-PLKF becomes an ordinary linear Kalman filter with
constant observation matrix lk = [1, 0] [17]. Because the ordinary
Kalman filter is unbiased, the z-PLKF also becomes unbiased.

4. PATH OPTIMIZATION STRATEGIES FOR THE
3D-PLKF

4.1. Gradient-descent algorithm for the xy-PLKF

In order to improve tracking performance, gradient-descent path op-
timization [11] is applied with the xy-PLKF. Mean squared error
(MSE) is used to evaluate the estimation performance.

We define the cost function based on the xy-PLKF as

J(rxyk) =

[
J(rxk) = tr(Wk|k)
J(ryk) = tr(Wk|k)

]
(17)

where tr(Wk|k) is the trace of the xy-PLKF covariance matrix and
rxyk = [rxk, ryk]

T is the own-ship location in xy-plane at time k.
In the optimization, the next waypoint rxyk+1 of the own-ship needs
to satisfy the relationship below [11]

rxyk+1 = rxyk − vxyT
∂J(rxyk)

∂rxyk∥∥∥ ∂J(rxyk)∂rxyk

∥∥∥ (18)

where vxy is the sensor velocity in xy-plane. The objective of
minimizing J(rxyk) becomes finding the largest gradient ∂J(rxyk)

∂rxyk
.

From (18), the local gradient vector at the own-ship kth position can
be calculated by

∂J(rxyk)

∂rxyk
=

[
∂J(rxk)
∂rxk

≈ J(rxk+δ)−J(rxk)
δ

∂J(ryk)

∂ryk
≈ J(ryk+δ)−J(ryk)

δ

]
(19)

where δ is a next step distance. To obtain J(rxk+δ) and J(ryk+δ),
we also need to calculate the probable next step pseudolinear mea-
surement matrix hk+1. Besides, the probable next step pseudolinear
noise variance ek+1 which is required in hk+1 calculation can be
rebuilt by substituting rxk + δ and ryk + δ into (6d), respectively.
Then based on (6), Wxk+1|k and Wyk+1|k are obtained and we get

J(rxk + δ) = tr(Wxk+1|k)
J(ryk + δ) = tr(Wyk+1|k).

(20)

Substituting (19) and (20) into (18), the own-ship next waypoint
is obtained by

rxyk+1 =

 rxk − vxyT
∂J(rxk)
∂rxk

|| ∂J(rxyk)
∂rxyk

||
, ryk −

vxyT
∂J(ryk)

∂ryk

|| ∂J(rxyk)
∂rxyk

||

T .
(21)

In the gradient calculation, the noise variance ek, next step pseudo-
linear measurement vector hk+1 and gain matrix kk+1 are required
that can be re-calculated based on (6).

4.2. Grid search path optimization for the z-PLKF

As it is impossible to calculate the gradient-descent vector in z-axis
only, grid search method is used. To minimize the estimation MSE,
the cost function is defined as

J(rzk) = tr(Sk|k). (22)

The possible next waypoints are represented as

Φ(rzk+1) =

[
rzk, ..., rzk ± (N − 1)

vxyzT

N
, rzk ±N

vxyzT

N

]T
(23)

where Φ(rzk+1) is the possible next waypoint vector, N is the grid
search radius that determines how many points will be calculated,
vxyz is own-ship velocity. Note that vz =

rzk+1−rzk
T

and v2xyz =

v2xy + v2z . The cost function values of possible next waypoints are
acquired by substituting each elements of Φ(rzk+1) into (11). The
optimal next waypoint is obtained from

rzk+1 = argmin
Φ(rzk+1)

J(rzk+1). (24)

The final 3D path optimization algorithm is from (21) and (24)
and they are decoupled.
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5. SIMULATION STUDIES
In the simulation examples, the target is at [1000, 1000, 1000]m
originally with the velocities [5, 5 sin ( kπ

150
), 1]m/s. Besides, the

target acceleration error variances are [0.52, 0.52, 0.12]m4/s4. The
own-ships move from different places. Own-ship 1, 2 and 3 start
from [0, 0, 0]m, [2000, 2000, 300]m and [−100, 1800, 2000]m,
separately. The own-ships have a same velocity vxyz = 70m/s.
The time interval is T = 1s with 300 measurement points and
δ = 70m. The sensor measurement noises are σθ = σφ = 1o.
The estimator initial parameters are a0|0 = [1400, 9, 800, 13]T ,
b0|0 = [1100, 5]T , W0|0 = diag[104, 104, 104, 104] and S0|0 =

diag[104, 104]. 21 points are picked in the grid search optimization.
The filters assume qx = qy = qz = 10−2. A no fly sphere around
the target with 500m radius is maintained. The algorithm of how
to avoid the no fly area is similar to [11]. Own-ship 4 starts from
[0, 0, 0]m and uses an 3D EKF gradient-descent path optimization
method as a comparison. The EKF initial parameters are [a0|0; b0|0]
and diag[W0|0,S0|0]. The whole estimate and path optimization
process is repeated with 500 Monte Carlo runs. The bias and root-
mean-squared-errors (RMSE) are calculated by using 500 Monte
Carlo runs. Collision problem is ignored.
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Fig. 2. Trajectories of the target and own-ship.
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Fig. 3. Evolutions of the distance between own-ships and target.

Table 1. Elevations of the target and own-ships
PPPPPPPelevation

k 25 50 100 150 200 300

Target (m) 1025 1050 1100 1150 1200 1300
Own-ship 1(m) 840 1028 1099 1149 1199 1299
Own-ship 2(m) 1029 1068 1098 1149 1199 1299
Own-ship 3(m) 1252 1049 1099 1149 1199 1298
Own-ship 4(m) 439 1537 1371 1208 1257 1331
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Fig. 4. Evolutions of the range and velocity bias.
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Fig. 5. Evolutions of the RMSE.

Fig. 2 shows the mean trajectories of the target and own-ships.
Fig. 3 shows the mean distance changes between own-ships and the
true target. The own-ships using PLKF method reach the no fly area
and follow the target with spiral paths. While the trajectory of own-
ship 4 shows a tendency of flying away from the target. The eleva-
tions of the own-ships and target are shown in Table 1. The results
from Table 1 match the lemma in Section 3.3.

Fig. 4 and Fig. 5 provide the mean bias and RMSE performance
of the different own-ships. The bias cannot be eliminated because
of the process noise (modeling and acceleration error). From Fig. 4
and Fig. 5, the bias and RMSE of the three PLKF examples all show
a tendency of converging to a small value. In Fig. 4, at the early
period of tracking process, bias increases because the cost function
is the trace of the covariance matrix rather than the bias. Besides, the
estimation performance is impacted by the start points significantly.
The performance of own-ship 1 is also better than the performance of
own-ship 4 before the divergence problem. This divergence problem
may happen when the state model becomes very different from the
real target. The acceleration noise also makes the EKF unstable.

6. CONCLUSION

In this paper we have proposed a 3D PLKF and an own-ship path
optimization algorithm for 3D AOA target tracking. First, the non-
linear azimuth and elevation angle measurements were transformed
into pseudolinear models. Next, a 3D PLKF was developed consist-
ing of an xy-PLKF and a z-PLKF. We showed that when the own-
ship and target are at the same height, the z-PLKF becomes unbi-
ased. The gradient-descent method was applied in the xy-plane path
optimization by minimizing the MSE. As the gradient-descent vec-
tor is impossible to obtain for the z-axis, a grid search optimization
method was designed for the z-axis path optimization. Simulation
examples verified the effectiveness of the proposed algorithm. The
future work will consider using multiple own-ships to track multiple
targets with distributed estimation and path optimization strategies.
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