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ABSTRACT

In this paper, a track selection problem for multi-target tracking
in a multifunction radar network is studied using the concepts from
game theory. The problem is formulated as a non-cooperative game,
and specifically as an anti-coordination game, where each player
aims to differ from what other players do. The players’ utilities are
modeled using a proper tracking accuracy criterion and, under dif-
ferent assumptions on the structure of these utilities, the correspond-
ing Nash equilibria are characterized. To find an equilibrium, a dis-
tributed algorithm based on the best-response dynamics is proposed.
Finally, computer simulations are carried out to verify the effective-
ness of the proposed algorithm in a multi-target tracking scenario.

Index Terms— Multiple target tracking, track selection, non-
cooperative games, coordination, Nash equilibrium.

1. INTRODUCTION

Radar networks that employ multiple, distributed stations offer sig-
nificant advantages over standalone radars, in terms of providing di-
versities and enhancing tracking and detection performance. Fur-
thermore, recent advances in sensor technologies enabled a large
number of controllable degrees of freedom in modern radars. One
such system is the Multifunction Radar (MFR), which employs an
electronically scanned phased array composed of individually con-
trolled radiating elements [1]-[3]. Due to its beam and waveform
agility, the MFR is capable to track multiple targets and perform
new target search in the sector. Thus, the MFR is much more flexible
than conventional, dedicated radars by being capable of performing
different functions - volume surveillance, weapon control, and mul-
tiple target tracking to name a few. In this paper, we focus on the
latter function [4]-[5]; specifically, each MFR radar aims at tracking
several targets.

Even for a standalone MFR, the radar resource management
plays a crucial role so as to efficiently allocate resources to achieve
specified objectives while conforming to operational and techni-
cal constraints [6], [7]. Most of the existing approaches to MFR
radar resource management roughly fit into the following two cat-
egories [8], [9]. The first category consists of the rule-based tech-
niques [10]-[12], which control the resource allocation parameters
indirectly, under low computational burden. However, it is hard to
say what performance can be achieved since it highly depends on
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the application scenario and on the sensors being deployed. The
other category is related to the methods that formulate the problem
as an optimization one; and thus, they may achieve the optimal
performance, see [13]-[15], [1], [5] and the references therein.

Note that, in the network setting, the first category of approaches
is difficult to be extended, while the second one may involve ex-
cessive complexity due to the network dimension. To reduce such
complexity, in this work we propose a distributed approach based on
game theory so as to model track selection for multi-target tracking
in an MFR network.

Game theory is the mathematical study of conflict and cooper-
ation between intelligent rational decision-makers [16]. In addition
to its traditional research areas such as economics and political sci-
ences, over the last decade game theory (GT) is being applied to
signal processing and wireless communications. This is mainly due
to the issues dealing with (distributed) networking [17], [18], such as
power control [19], antennas’ beamforming [20], multiple input mul-
tiple output (MIMO) communications [21], channel allocation [22],
adaptive estimation [23], [24], to name a few. More recently, GT
has been applied to solve certain radar problems, mostly related to
the MIMO radar networks. For instance, the problem of waveform
design has been tackled; in [25] by formulating a two player zero-
sum (TPZS) game between the radar design engineer and an oppo-
nent, and in [26] by a potential game in which the radars choose
among the pre-fixed transmit codes. Next, the interaction between
a smart target and a MIMO radar is modeled as a TPZS game [27],
where the mutual information criterion was used in the utility func-
tions. Also, the problem of transmission power management was
addressed in [28], [29]. Initially, the power control problem was for-
mulated in [28] assuming the presence of some interference due to
the other radars’ transmissions. A non-cooperative game was used
for modeling and a distributed algorithm converging to a Nash equi-
librium was proposed. On the other hand, in reference [29], a coali-
tional game theoretic solution concept called the Shapley value was
employed to distribute a given power budget among all transmitting
radars. More related to the application scenario in this article, the
work in [30] utilize a market mechanism, called the continuous dou-
ble auction, in order to choose the global optimum parameters for
each individual task given the global (finite) resource constraint.

In contrast to the aforementioned literature, in this paper we
formulate a new problem of track selection for a multi-target track-
ing scenario in a resource-limited MFR network using the non-
cooperative games, the dominant branch of GT [16]. An example
of such a scenario is depicted in Fig. 1. To the best of our knowl-
edge, this is the first non-cooperative GT contribution dealing with
multi-target tracking. Due to its nature, the problem is modeled as a
coordination game which is known to have several Nash equilibria.
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Fig. 1. A track selection problem in multi-target tracking.

Then, the equilibria are characterized in terms of their existence con-
ditions and efficiency. Finally, to find an equilibrium, a distributed
algorithm based on the best-response dynamics is proposed and its
effectiveness for the track selection issue in multi-target tracking is
demonstrated.

2. PROBLEM FORMULATION

Suppose that there are multiple MFR radars and several targets to be
tracked whose number is known exactly and their current positions
approximately, see Fig. 1. We denote the set of radars by N , while
the set of targets is denoted by T . The targets are assumed to be
well-separated; thus there is no data association problem and differ-
ent transmission beams are required so as to illuminate the targets.
Consider that there is no fusion center and that each radar aims at
tracking all targets simultaneously. Next, each target j ∈ T , at each
discrete time k, follows the so-called white noise constant velocity
model [4], [13] given by

xj,k = F · xj,k−1 + wj,k−1 (1)

z
(i)
j,k = h

(i)
j (xj,k) + ν

(i)
j,k (2)

where the state vector x for each target j is comprised of the two di-
mensional coordinates and velocity, i.e., xj = [xj , yj , vj,x, vj,y]T ,
while F is a 4 × 4 matrix corresponding to the deterministic target
dynamics given as F =

[
1 tu
0 1

]
⊗ I2, with ⊗ being the Kronecker

product, I2 stands for a 2 × 2 identity matrix and tu is the update
time that is fixed. The process noise w is Gaussian with zero mean

and covariance Q = σ2
w ·
[
t3u/3 t2u/2

t2u/2 tu

]
⊗ I2, where σ2

w models ma-

neuverability. At each radar i ∈ N , the measurement vector z(i)j,k

consists of range and azimuth, i.e., z(i)j,k =
[
r
(i)
j,k, a

(i)
j,k

]T
, while the

nonlinear transformation h(i)
j (xj) is given by

h
(i)
j (xj) =

[ √
(xj − xi)2 + (yj − yi)2

arctan((yj − yi)/(xj − xi))

]
.

The coordinates (xi, yi) of each radar i ∈ N are assumed known.
Finally, the measurement noise ν(i)j is zero-mean Gaussian with co-

variance Rj,i = diag
{

[σ
(i)
rj ]2, [σ

(i)
aj ]2

}
.

The radars have limited time budget in sense that they cannot
take measurements of all targets during the same time slot. The num-
ber of measurements per scan that each radar can make is given by
m < |T |. Since there is no central entity that may coordinate actions
of the radars, a distributed solution is needed. The interaction among
the radars is existing but limited to sharing, e.g., by broadcasting, the

measurements {z(i)j,k} related to the previously selected targets. The
number of transmissions each target j is tracked by at one time slot
is denoted asmt

j . For notational simplicity, in the rest of this section
we drop the index j for targets.

At each radar i and for each target j, the tracking process is per-
formed by an Extended-Kalman Filter (EKF). Firstly, the prediction
step occurs, i.e.,

xk|k−1 = F · xk−1|k−1 (3)

Pk|k−1 = FPk−1|k−1F
T +Q (4)

where xk|k−1 and Pk|k−1 are the state estimate and the error co-
variance matrix for time step k given all measurements till time step
k − 1. Then, the updating step takes place where each available
measurement for target j of some radar n ∈ N is used in a cyclic
manner. In particular, for each p ∈ {1, . . . ,mt

j},

K
(p)
k = P

(p−1)

k|k [H
(p)
k,n]T

(
H

(p)
k,nP

(p−1)

k|k [H
(p)
k,n]T +Rn

)−1

(5)

x
(p)

k|k = x
(p−1)

k|k +K
(p)
k

(
z
(n)
k − h(n)

(
x
(p−1)

k|k

))
(6)

P
(p)

k|k =
(
I −K(p)

k H
(p)
k,n

)
P

(p−1)

k|k (7)

where P (p)

k|k denotes the error covariance matrix after p incremental

updates at the same time step k, with P (0)

k|k = Pk|k−1 and x
(0)

k|k =

xk|k−1. The linearized measurement matrix of radar n at time k
is H(p)

k,n = ∂h(n)/∂x evaluated at x
(p−1)

k|k . Note that, due to the
fact that the position of each radar is known, the radars do not need
to exchange {Hk,n} matrices in order to implement the algorithm
above.

In the following, we study a natural game theoretic variant of
this problem. Specifically, we assume that the radars are autonomous
decision-makers interested in optimizing their own tracking perfor-
mance. The fact that each radar autonomously and rationally decides
to track the targets that increase its utility can be modeled as a one-
stage non-cooperative game in normal form.

3. GAME-THEORETIC MODEL

Here, we formulate the track selection problem in multi-target track-
ing as a non-cooperative game in normal form, which is the most
fundamental representation type in game theory [16]. Note that there
are many classes of normal-form games; however, in this work we
focus on coordination games, which do not rest solely upon conflict
among players. Instead, as their name suggests, more emphasis is
put on the coordination issue where players may have an incentive
to conform with or to differ from what others do. In the latter case,
this kind of games are usually called anti-coordination games [16],
[31]-[32].

We assume that the players are rational and their objective is to
maximize their payoff, i.e., the tracking accuracy of all targets. For-
mally, the track selection game (N ,S, u) has the subsequent com-
ponents:

• The players are the radars represented by the setN .

• The strategy of each radar i is represented by a |T |-tuple
si = (si,1, si,2, . . . , si,|T |) where si,j = a if radar i de-
votes a transmission beams to a target j, with a ≤ m. Each
strategy-tuple has at mostm transmissions, i.e.,

∑|T |
j=1 si,j ≤

m. Also, note that mt
j =

∑|N|
i=1 si,j . Each vector s =
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Fig. 2. An example of a track allocation where T = {a, . . . , e},
and |N | = m = 3. Each box represents a gain increment due to
a measurement, and the number of measurements per target, mt

j ,
varies between 1 and 4 across targets in T . In case (a), the gains are
equal for the same number of measurements, while in case (b) they
differ.

(s1, . . . , sN ) ∈ S is called an action or strategy profile, and
s−i = (s1, . . . , si−1, si+1, . . . , sN ) is defined as a strategy
profile s without player i’s strategy.

• The utility for each radar i is given by

ui(si, s−i) =

|T |∑
j=1

(
gainj(m

t
j)− c · τj

)
, (8)

where the term gainj(m
t
j) represents the tracking accuracy

gain for target j ∈ T and it is defined by

gainj(m
t
j) =

Tr

{
Pj,k|k−1 − P

(mt
j)

j,k|k

}
, if mt

j ≥ 1

0, otherwise
(9)

where all radars are assumed to have the same initial guesses
xj,0|0 and Pj,0|0. Finally, the normalization coefficient c in-
dicates delay importance, while τj is the delay function given
as

τj =

{
0, if mt

j ≥ 1

1, otherwise
. (10)

In other words, the strategy of radar i defines the number of
transmissions per each target, at a given time slot. Due to the fact that
radars share their measurements, their tracking accuracy gains for a
specific target are dependent on all radars’ measurements related to
that target. If set to be non-negative, the delay importance coefficient
can serve as a mechanism for punishing radars in case where not all
targets are being tracked. Otherwise, if set negative enough, it gives
incentives to radars to focus all their resources on less targets. In our
study, it is of interest to study the former case.

In practice, the gain function in (9) can be assumed to be increas-
ing in the number of measurements, at least in mean sense. Note

that the gain in (9) can be expressed as gainj

(
mt

j

)
=
∑mt

j

p=1 ∆g
(j)
p ,

where ∆g
(j)
p = Tr{P (p−1)

j,k|k −P
(p)

j,k|k} and ∆g
(j)
1 = gainj(1). Also,

in a real system it reasonable to assume that an estimation accu-
racy gain increment ∆g

(j)
p decreases as the order of measurements

p grows, i.e., ∆g
(j)
p > ∆g

(j)
p+1. For the analysis in the sequel, the

following two cases are distinguished:

a) ∆g
(j)
p = ∆gp, for all j ∈ T and p ∈ {1, . . . ,mt

j}

b) ∆g
(j)
p 6= ∆g

(`)
p , for j 6= `, and minj∈T∆g

(j)
p >

maxj∈T∆g
(j)
p+1.

Case a) represents an idealistic case where all nodes would have very
similar measurements among themselves and related to all targets,
see Fig 2(a). A more realistic scenario, corresponding to case b), is
illustrated in Fig 2(b). In the following section, the track selection
game for both cases will be analyzed.

4. NASH EQUILIBRIA

In general, one can reason about multiplayer games using solution
concepts, i.e., principles according to which interesting outcomes of
a game can be identified. Although there are many solution concepts
in the game-theory literature, a basic and the most widely accepted
one is the Nash equilibrium. Formally, in case in which players make
deterministic choices (pure strategies) the Nash equilibrium is de-
fined as follows [16].

Definition 1. A strategy profile s = (s1, . . . , sN ) is a pure-strategy
Nash equilibrium (NE) if, for all players i and for all strategies s′i 6=
si, it holds that ui(si, s−i) ≥ ui(s

′
i, s−i).

In other words, in an NE, no player can unilaterally improve its
utility by taking a different strategy. Also, it is important to define
Pareto domination and Pareto optimality.

Definition 2. Strategy profile s Pareto dominates strategy profile s′

if ∀i ∈ N , ui(s) ≥ ui(s
′), and there exists some n ∈ N for which

un(s) > un(s′). Also, strategy profile s is Pareto optimal (PO)
if there does not exist another strategy profile s′ ∈ S that Pareto
dominates s.

Generally, in a coordination game, there are multiple NE. If the
players have the same payoffs, and the equilibria are equal, the game
is a pure coordination one. In fact, in such a game, all NE are PO.
On the other hand, in a ranked one, the NE differ and usually there
is only one PO equilibrium [33].

Now, the main findings related to the NE for cases (a) and (b)
are provided.

Proposition 1. For case (a), any track assignment is a PO NE, if
c ≥ 0 and

∑|T |
j=1 si,j = m, and if

• mt
j ≤ 1, ∀j ∈ T , for a scenario where |N | ·m ≤ |T |

• maxj,`∈T {|mt
j−mt

`|} ≤ 1, ∀j, ` ∈ T , for a scenario where
|N | ·m > |T |.

Firstly, let us assume that there is a radar i such that
∑|T |

j=1 si,j <

m and that the corresponding s∗ is an NE. Then, radar i can change
its strategy by taking an additional measurement. Due to the fact
that the radar’s gain function in (9) is increasing in the number of
measurements, its utility will be increased. But that contradicts our
initial assumption that s∗ is an NE; thus, as per our intuition, each
radar should make all possible transmissions toward the target(s) at
each time instant. Next, note that if the total number of measure-
ments is less than or equal to the number of targets, the condition
related to c ensures that the radars are punished if more than one
measurement in total is devoted to the same target. Also, due to the
structure of gain function, NE are precisely |T |!

(|T |−|N|·m)!
outcomes

in which each measurement is devoted to a distinct target. On the
other hand, if |N | ·m > |T |, condition c ≥ 0 promotes all targets
to be covered. Here, each NE corresponds to a balanced allocation.
For instance, the allocation in Fig 2(a) is not an NE since the payoffs
can be increased if some player moves its measurement from target
b to any other target. Finally, since the gain of any target is the same
for the same number of measurements, the game appears to be a
pure anti-coordination one. Thus, every NE is also Pareto optimal.
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Proposition 2. For case (b), any track assignment is an NE, if c ≥ 0

and
∑|T |

j=1 si,j = m, and if,

• for a scenario with |N | · m ≤ |T |, each radar chooses its
most accurate target that has not been selected,

• for |N | ·m > |T |, the first
⌈
|N|·m
|T |

⌉
− 1 levels are filled in,

i.e., mt
j ≥

⌈
|N|·m
|T |

⌉
− 1, ∀j ∈ T , and for the

⌈
|N|·m
|T |

⌉
-th

level each radar chooses its most accurate target that has not
been selected by others, where d·e is the ceiling function.

Similar arguments hold as for Prop. 1. Yet, the game above
seems to be a ranked anti-coordination game. Note that here there
are still multiple NE, but not all NE are necessarily equal, and hence,
not every NE is Pareto optimal (only one is). So, the conditions
above are not sufficient to have also a Pareto optimal NE.

To conclude this section, we provide a simple, distributed algo-
rithm, based on the best response dynamics [16], [17], to achieve an
NE. In the games above where |N | ·m > |T |, in general, two types
of NE may arise, one where a radar illuminates only different targets
and the other where it chooses the same target more than once. In
practice, it is of interest to exploit the radars’ diversity; thus, we fo-
cus on the former type. Let Ti denote the set of targets selected by
radar i. Then, for any initialization, at each time instant each radar
i ∈ N performs the following steps:

• Count mt
j , ∀j ∈ T , and reallocate the measurements for

∀j ∈ Ti satisfying si,j > 1 to a target argmin`∈{T /Ti}m
t
`.

• With probability α, reallocate the measurement from target j
to `

– if ∃j ∈ Ti such that mt
j >

⌈
|N|·m
|T |

⌉
and the measure-

ment for ` is the most accurate one of those satisfying
argminq∈{T /Ti}m

t
q , or

– if mt
j −mt

` = 1, where mt
j = maxq∈Tim

t
q and mt

` =
minq∈{T /Ti}m

t
q , and if measurement for ` is more ac-

curate than the one for j.

• Transmit/receive measurements, and ∀j ∈ T , execute (3)-(4)
and employ all available measurements in (5)-(7).

To account for time-varying accuracy measures, e.g., range and/or
azimuth variances, or to deal with different model dynamics, algo-
rithm can be reinitialized every K time instants so as to search for
other NE during the tracking process.

5. SIMULATIONS

In this section, we will demonstrate the performance of the proposed
algorithm for track selection in multi-target tracking.

We consider an MFR network of |N | = 3 radars, each of
them making m = 2 measurements per scan and aiming at track-
ing |T | = 5 targets. The coordinates of radars are (x1, y1) =
[−10 km, 0 km], (x2, y2) = [3 km, 0 km] and (x3, y3) =
[10 km, 0 km]. The targets follow white noise constant veloc-
ity trajectories with initial x, y-coordinates and velocities x1,0 =
[1 km, 6 km, 0.5 km/s, 0.1 km/s]T , x2,0 = [0.5 km, 7 km,
0.35 km/s, −0.1 km/s]T , x3,0 = [1.5 km, 3.0 km, −0.3 km/s,
0 km/s]T , x4,0 = [2.0 km, 4.0 km, −0.2 km/s, 0.1 km/s]T

and x5,0 = [2.5 km, 5.0 km, 0.3 km/s, 0.2 km/s]T . Initial
guesses xj,0|0 are noisy versions of the initial states xj,0 and ini-
tial covariances are equal to Pj,0|0 = P0|0 = diag

{
(0.1 km)2,

(0.1 km)2, (0.1 km/s)2, (0.1 km/s)2
}

. The update time is tu =

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

Time, k

S
um

 o
f  

T
ra

ce
(P

) 

 

 

Standalone − no share
Distributed random − K= 10
Distributed random − K= 1
Proposed distributed − K=10
Centralized − K=10

Fig. 3. Sum of traces of error covariance matrices for all targets
during time.

0.25 s, and in order to model moderate maneuverability, σ2
w is set

to 2.5 · 10−5 km2/s3. Also, the standard deviation in azimuth
is σ(i)

aj = σa = 2mrad, while the range accuracy varies among
the radars and targets as σ(i)

rj = bi,j · σr , where σr = 15m and
bi,j is taken from the interval [1, 4.5]. Next, a comparison is made
among the following strategies: (a) the standalone radar that does
not send/receive measurements, and sequentially chooses m = 2
different targets at each time instant; (b) distributed strategy where
the radars exchange the measurements while each of them ran-
domly changes its selection at each K = 10 time instants; (c) same
as in (b), except that targets are being randomly chosen at each
time instant; (d) the proposed distributed algorithm seeking NE for
α = 0.4 while being reinitialized with K = 10; and (e) an approx-
imated centralized approach based on exhaustive search for optimal
measurements-to-target allocation every K = 10 time instants.

The results in Fig. 3 are averaged over 100 realizations. Not
surprisingly, due to the high process’ dynamics, a standalone, non-
cooperative radar experiences weak performance since it utilizes
only its own measurements which are not sufficient to cover all tar-
gets. However, although approach in (b) uses 3x2=6 measurements,
due to the lack of coordination it performs poorly. Note that the dis-
tributed random strategy can be significantly improved if strategies
are constantly being changed, given that there are no track migration
costs involved. However, the proposed distributed algorithm that
learns underlying NE outperforms aforementioned strategies and
closely approaches to the performance of the centralized one while
being much more efficient in terms of complexity.

6. CONCLUSIONS

We have formulated a track selection problem for multi-target track-
ing in a network of MFR radars. The problem has been tackled using
the non-cooperative game theory. The Nash equilibria of the under-
lying anti-coordination games have been analyzed and a simple yet
effective distributed algorithm that looks for the equilibria points has
been proposed. It introduces a balancing effect in the track selection
which makes it be particularly convenient for the settings with high
dynamics. Also, it closely approximates the centralized performance
while mitigating its inherent complexity. Our future work may con-
sider extending the results for different communication topologies
and for cases where not all radars have the same interests.
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