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ABSTRACT

Multiple scattering effects are commonly ignored in the detection
and estimation of scatterers in signal processing research, because
the energy of the first-order scattering is much larger than that of
higher-order components. Although multiple scattering can signif-
icantly increase the estimation precision of point scatterers, it does
not always lead to an improvement. Identifying conditions under
which multiple scattering is beneficial or detrimental to estimation
in a general setup is still an open problem. In this paper, we consid-
er the effects of multiple scattering on the localization of two point
scatterers. By comparing the Fisher information matrix on location
parameters when multiple scattering exists and does not exist, we
show analytically that information on ranges can benefit estimating
directions of arrival via multiple scattering when the two scatterers
are in far-field and well resolved.

Index Terms— Multiple Scattering, Fisher Information, Cramér-
Rao Bound, Estimation, Artificial Scatterer

1. INTRODUCTION

Single scattering is a usual assumption in sensing signal process-
ing research: The signal observed at the receiver side is assumed to
come from a wave that has traveled from a transmitter to a scatter-
er and then back-scattered to the receiver. When multiple scatterers
exist, the received signal is typically modeled as the sum of waves
scattered by each individual scatterer. Even though the wave scat-
tered by one scatterer may propagate to other scatterers and arrive
at the receiver via multiple paths, such interactions among scatterers
due to multiple scattering [1] are largely ignored because the energy
of the single scattering, i.e., the first-order scattering, is much larger
than that of higher-order components. How multiple scattering af-
fects the precision of estimating scatterers and their imaging resolu-
tion has been investigated in a number of studies [2]-[10], but the re-
sults are controversial. Shi and Nehorai derived a closed-form phys-
ical model to account for multiple scattering [2] and Cramér-Rao
bounds (CRBs) [3] on the precision of estimating the location and
scattering parameters of point scatterers. By comparing the CRB-
s for multiple scattering with a reference case that has only single
scattering, they showed that multiple scattering could significantly
improve the estimation performance. Sentenac et al. investigated the
influence of multiple scattering on the CRB for the estimation of the
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inter-distance between two objects [4], in which they observed that
the occurrence of strong multiple scattering does not automatically
lead to a resolution enhancement. Chen and Zhong studied the role
of multiple scattering in the framework of transverse electric electro-
magnetic inverse scattering and showed that multiple scattering does
not always improve the accuracy of estimation [5]. Simonetti et al.
considered the possibility of retrieving the subwavelength structure
of an object when it is illuminated and detected in a far-field lo-
cation [6], [7]. They demonstrated that the imaging resolution can
go beyond the diffraction limit by exploring the multiple scattering
within the medium. On the other hand, de Rosny and Prada argued
that subwavelength detection is still possible even without multiple
scattering between the subwavelength structures [8].

Given the inconsistent effects of multiple scattering on the esti-
mation and imaging of scatterers, identifying conditions under which
multiple scattering is favorable or detrimental is crucial. Marengo et
al. made such an attempt by considering a system of two scatterers
with a single transmitter and single receiver [9], [10]. Assuming on-
ly one location parameter is unknown and comparing its CRBs under
the cases with and without multiple scattering, they identified some
sufficient or necessary conditions. Because of the highly non-linear
nature of the physical model as well as the CRBs when multiple
scattering is incorporated, comparing CRBs analytically in a general
setup is challenging and identifying such conditions is still an open
problem. In this paper, we consider a system of two point scatterers
under a general multistatic configuration with multiple transmitters
and multiple receivers. Assuming all location parameters of the scat-
terers are unknown, we compare analytically the Fisher information
matrices (FIMs) when multiple scattering either exists or does not.
We show that when the two scatterers are in far-field locations and
well resolved [11], multiple scattering is favorable for the estimation.

2. MODELS AND CRAMÉR-RAO BOUNDS

We briefly describe the two physical models employed in this work:
One incorporates multiple scattering and the other includes only
single scattering. Although the second model is a first-order ap-
proximation of the first one, we treat it as if it were exact in the
comparisons, i.e., it represents a fictitious reference scenario where
there is no multiple scattering among the scatterers. A complete
presentation of the two models can be found in [2], and closed-
form CRBs for estimating the location and scattering parameters of
multiple scatterers were derived in [3].

We consider two point scatterers at unknown positions x1 and
x2, where x1,x2 ∈ R3 and assume that their scattering coefficients
τ1 and τ2 are known, where τ1 and τ2 are complex numbers. A
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transmit and receive array of N isotropic point antennas is used to
illuminate and localize the scatterers, the elements of which are at
known positions α1,α2, . . . ,αN ∈ R3. See Figure 1 for the multi-
static illustration.

Fig. 1. Illustration of the multistatic setup.

2.1. Model and Cramér-Rao Bound with Multiple Scattering

Using the Foldy-Lax model [12]-[15] as a basis for incorporating
multiple scattering, the multistatic response matrix [11] can be for-
mulated in a closed matrix form as [2],

KFL = A(T−1 − S)−1AT , (1)

where A = [g(x1), g(x2)] ∈ CN×2, “T ” denotes the matrix trans-
pose, T = diag{τ1, τ2} and the matrix S is defined as

S =

[
0 G(x1,x2)

G(x1,x2) 0

]
= [s(x1), s(x2)].

The Green function G(x1,x2) = −eikR/4πR in the three-
dimensional space represents the “propagator” from location x1

to x2, where k is the background wave number and R = |x1 − x2|
is the Euclidean distance between the two scatterers. The transmit
and receive Green function vectors g(x1), g(x1) ∈ CN are

g(x1) = [G(x1,α1), G(x1,α2), . . . , G(x1,αN )]T ,

g(x2) = [G(x2,α1), G(x2,α2), . . . , G(x2,αN )]T ,

where G(xm,αj) = −eikRm,j/4πRm,j and Rm,j = |xm − αj |
for m = 1, 2 and j = 1, 2, . . . , N .

Assume that the measured multistatic response matrix is a
noisy version of (1) and the noises are additive, independent, and
identically distributed following a multivariate, complex, circularly-
symmetric Gaussian distribution. The CRB for estimating the
location parameters x = [xT

1 ,x
T
2 ]T can be computed as the inverse

of the FIM

IFL(x) =
2

σ2
R
{
DH

FLDFL

}
, (2)

where σ2 is the variance of the noise, R{·} takes the real part
of a complex matrix, and “H” denotes the conjugate transpose,
DFL = ∂vec(KFL)/∂xT and vec(·) vectorizes a matrix by stack-
ing its columns one under another. The Jacobian matrix DFL was
derived in [3] as

DFL = A(T−1 − S)−1 ⊗ 1T
n �B − [A(T−1 − S)−1 ⊗

A(T−1 − S)−1]C +B � [A(T−1 − S)−1 ⊗ 1T
n ], (3)

where “⊗” denotes the Kronecker product [17], 1n is an n-
dimensional column vector with each element as 1, n is the dimen-
sion of one location coordinate, for instance n = 3 for the three-
dimensional formulation, “�” denotes the Khatri-Rao product [17],
B = [b(x1), b(x2)], b(xm) = ∂g(xm)/∂xT

m for m = 1, 2 and
C = [cT (x1), cT (x2)]T , c(xm) = ∂s(xm)/∂xT for m = 1, 2.

2.2. Model and Cramér-Rao Bound without Multiple Scattering

We employ the Born-approximated model [12], [16] as the reference
model for studying the effect of multiple scattering. In this case,
the multistatic response matrix that includes only single scattering is
modeled as

KB = ATAT = τ1g(x1)gT (x1) + τ2g(x2)gT (x2). (4)

The corresponding CRB is the inverse of the following FIM

IB(x) =
2

σ2
R
{
DH

BDB

}
, (5)

where DB = ∂vec(KB)/∂xT . The Jacobian matrix DB is [3]

DB = AT ⊗ 1T
n �B +B � (AT ⊗ 1T

n). (6)

It is easy to see that KB and DB are special cases of KFL and DFL,
respectively, when S is set to be a zero matrix.

3. FISHER INFORMATION MATRIX COMPARISON

Instead of comparing the CRBs for the two cases directly, we com-
pare the corresponding FIMs, because, for two matrices A and B,
A−1 ≤ B−1 if and only if A ≥ B [18]. Here, A ≥ B means that
A − B is positive semidefinite. To evaluate the two FIMs IFL(x)
and IB(x), we first compute matrices B and C in (3) and (6). The
derivatives of the Green functions with respect to the location pa-
rameters can be calculated as

∂G(xm,αj)

∂xm
= G(xm,αj)

ikRm,j − 1

R2
m,j

(xm −αj)

≈ ikG(xm,αj)
−−−−−−→
xm −αj ,

where −−−−−−→xm −αj = (xm − αj)/Rm,j for j = 1, 2, . . . , N , m =
1, 2, and the approximation holds when Rm,j � 1. Therefore,

b(xm) ≈ ik[G(xm,α1)
−−−−−−→
xm −α1, · · · , G(xm,αN )

−−−−−−→
xm −αN ]T

≈ ikg(xm)⊗−−−−−→xm −α
T
, (7)

where α is the geometric center of the transmit and receive array.
In the second approximation, we use −−−−−−→xm −αj ≈

−−−−−→
xm −α for j =

1, 2, . . . , N and m = 1, 2 assuming that the scatterers are in the far
field with respect to the array. This approximation is essentially also
a monostatic approximation. Thus, we have

B = [b(x1), b(x2)] ≈ ik[g(x1)⊗−−−−→x1 −α
T
, g(x2)⊗−−−−→x2 −α

T
].(8)

Analogously, when the two scatterers are well separated, i.e., R �
1, we have

∂s(x1)/∂xT
1 ≈ iks(x1)⊗−−−−−→x1 − x2

T
,

∂s(x1)/∂xT
2 ≈ iks(x1)⊗−−−−−→x2 − x1

T
,

∂s(x2)/∂xT
1 ≈ iks(x2)⊗−−−−−→x1 − x2

T
,

∂s(x2)/∂xT
2 ≈ iks(x2)⊗−−−−−→x2 − x1

T
,
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where −−−−−→x1 − x2 = (x1 − x2)/R and −−−−−→x2 − x1 = (x2 − x1)/R.
Then, matrix C can be approximated as

C = [cT (x1), cT (x2)]T

≈ ik

[
s(x1)⊗−−−−−→x1 − x2

T
, s(x1)⊗−−−−−→x2 − x1

T

s(x2)⊗−−−−−→x1 − x2
T
, s(x2)⊗−−−−−→x2 − x1

T

]
= ikvec(S)⊗ [

−−−−−→
x1 − x2

T
,
−−−−−→
x2 − x1

T
]. (9)

Substituting (8) and (9) into (3), we have

DFL ≈ ik
[
(2τ1g1 ⊗ g1 + τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)

⊗−−−−→x1 −α
T
− (τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−−→x1 − x2

T
,

(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1 + 2τ2g2 ⊗ g2)⊗−−−−→x2 −α
T

−(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−−→x2 − x1
T ]
, (10)

where G, g1 and g2 denote G(x1,x2), g(x1) and g(x2), respec-
tively. In (10), we ignored the higher-order terms of G and used the
approximation

det
(
(T−1 − S)−1) =

1

1/τ1τ2 −G2
≈ τ1τ2,

where det(·) represents the determinant of a matrix. The approxima-
tions hold well when |G| is small, that is, the two scatterers are well
separated and the multiple scattering between them is weak. Here,
| · | denotes the modulus of a complex number.

The FIM of location parameter x with multiple scattering can
be found as

IFL(x) ≈ 2

σ2
k2
[
EFL1,1 EFL1,2

EFL2,1 EFL2,2

]
, (11)

where

EFL1,1 = (4|τ1|2||g1||
4
F + d)

−−−−→
x1 −α

−−−−→
x1 −α

T
− d −−−−→x1 −α

−−−−−→
x1 − x2

T
− d −−−−−→x1 − x2

−−−−→
x1 −α

T
+ d
−−−−−→
x1 − x2

−−−−−→
x1 − x2

T

EFL1,2 = d
−−−−→
x1 −α

−−−−→
x2 −α

T
− d −−−−→x1 −α

−−−−−→
x2 − x1

T

−d −−−−−→x1 − x2
−−−−→
x2 −α

T
+ d
−−−−−→
x1 − x2

−−−−−→
x2 − x1

T

EFL2,1 = d
−−−−→
x2 −α

−−−−→
x1 −α

T
− d −−−−→x2 −α

−−−−−→
x1 − x2

T

−d −−−−−→x2 − x1
−−−−→
x1 −α

T
+ d
−−−−−→
x2 − x1

−−−−−→
x1 − x2

T

EFL2,2 = (4|τ2|2||g2||
4
F + d)

−−−−→
x2 −α

−−−−→
x2 −α

T
− d −−−−→x2 −α

−−−−−→
x2 − x1

T
− d −−−−−→x2 − x1

−−−−→
x2 −α

T
+ d
−−−−−→
x2 − x1

−−−−−→
x2 − x1

T
,

‖ · ‖F denotes the Frobenius norm of a vector, and

d = 2|τ1|2|τ2|2|G|2||g1||
2
F||g2||

2
F.

See Appendix A for the proof. When making the approximation in
(11), we assumed that the two point scatterers were well-resolved
[11], in which case gH

1 g2 ≈ 0. From an imaging point of view,
well-resolved scatterers correspond to the case where the scatterers
are sufficiently separated such that the point spread function of the
array does not significantly overlap any scatterer other than the one
that it is focused on [11].

For the reference case without multiple scattering, the Jacobian
matrix DB and FIM IB(x) are

DB ≈ ik[2τ1g1 ⊗ g1 ⊗
−−−−→
x1 −α

T
, 2τ2g2 ⊗ g2 ⊗

−−−−→
x2 −α

T
], (12)

IB(x) ≈ 2

σ2
k2
[
EB1,1 0
0 EB2,2

]
, (13)

where

EB1,1 = 4|τ1|2||g1||
4
F

−−−−→
x1 −α

−−−−→
x1 −α

T
,

EB2,2 = 4|τ2|2||g2||
4
F

−−−−→
x2 −α

−−−−→
x2 −α

T
.

It can be verified that (12) and (13) are special cases of (10) and (11),
respectively, when G is zero.

The difference between the two FIMs is

∆I(x) = IFL(x)− IB(x) ≈ 2

σ2
k2d

[
EI1,1 EI1,2

EI2,1 EI2,2

]
,

where

EI1,1 = (
−−−−→
x1 −α−

−−−−−→
x1 − x2)(

−−−−→
x1 −α

T
−−−−−−→x1 − x2

T
),

EI1,2 = (
−−−−→
x1 −α−

−−−−−→
x1 − x2)(

−−−−→
x2 −α

T
−−−−−−→x2 − x1

T
),

EI2,1 = (
−−−−→
x2 −α−

−−−−−→
x2 − x1)(

−−−−→
x1 −α

T
−−−−−−→x1 − x2

T
),

EI2,2 = (
−−−−→
x2 −α−

−−−−−→
x2 − x1)(

−−−−→
x2 −α

T
−−−−−−→x2 − x1

T
).

Let y1 = (
−−−−→
x1 −α

T
,
−−−−→
x2 −α

T
)T , y2 = (

−−−−−→
x1 − x2

T
,
−−−−−→
x2 − x1

T
)T ,

∆I(x)

≈ 4

σ2
k2|τ1|2|τ2|2|G|2||g1||

2
F||g2||

2
F(y1 − y2)(y1 − y2)T , (14)

which is a positive semidefinite matrix. This proves that the FIM
with multiple scattering is larger than that without it. The differ-
ence (14) represents the gain of Fisher information due to multiple
scattering.

4. NUMERICAL EXAMPLE

In order to evaluate the effect of multiple scattering in localizing two
well resolved scatterers in far-field, we consider a two-dimensional
(2-D) multistatic setup with a numerical example. The analytical
results in Section 3 apply without loss of generality. A uniform linear
array is used as the transmit and receive array located between (-5,0)
and (5,0) with a spacing of 0.5 between adjacent elements, where the
coordinates are in the unit of the wavelength. For computing CRBs,
we use the following background Green function:

G(r, r′) =
i

4

√
2

π

eik|r−r
′|√

k|r − r′|
e−iπ/4, (15)

where r and r′ are two arbitrary locations. The Green function is a
far-field approximation of the zero-order Hankel function of the first
kind [19], a solution of the wave equation in the 2-D scenario.

To evaluate the effects of multiple scattering on localizing the
two scatterers, we look at tr CRBB(x)/ tr CRBFL(x), the ratio of
the traces of the CRBs of the four coordinate parameters based on
the Born approximation and the Foldy-Lax model. A ratio larger
than one indicates that the sum of lower bounds on the variances
of the locations is smaller when multiple scattering exists than that
when it does not, i.e., multiple scattering improves the localization
of the scatterers. In the numerical example, the two scatterers are
located on the line y = 40 and are symmetric about the y-axis. The
ratio was evaluated with the inter-scatterer spacing varying from 10
to 50, and a total of 101 evaluations were carried out. Although the
two scatterers are fixed on line y = 40, all location parameters are
treated as being unknown and CRBs are computed for all location
parameters of the two scatterers. When evaluating the CRBs, all ap-
proximations and assumptions employed in Section 3 for analytical
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comparisons are not used; numerical results are computed in exact
forms under the general multistatic configuration.

Simulation results are shown in Figure 2. The upper panel shows
the results when τ1 = τ2 = 1. We can see that the precision of local-
ization is generally better with multiple scattering than that without
it. The ratio ranges from 0.99 to 1.17 and 99 of the 101 evaluations
have a ratio larger than one. The ratio tends to be smaller when the
spacing between the scatterers increases. This is because the Fisher
information gain (14) due to the multiple scattering is proportional
to |G|2, which becomes smaller with increasing inter-scatterer dis-
tance. The lower panel displays results for τ1 = 1, τ2 = 10. The
ratio varies from 3.74 to 11.19 and all of the 101 evaluations demon-
strate the enhancement of localization. As in the upper panel, the
ratio becomes smaller when the distance between the two scatterers
increases.

Fig. 2. tr CRBB(x)/ tr CRBFL(x) as a function of the distance be-
tween the two scatterers. Upper panel: τ1 = τ2 = 1; lower panel:
τ1 = 1, τ2 = 10.

5. DISCUSSION

We proved analytically that multiple scattering is beneficial for es-
timating the locations of two well-resolved point scatterers in far-
field locations. Because the Fisher information gain is proportional
to |G|2, the improvement due to the natural multiple scattering that
occurs between scatterers could be trivial, at least for well-resolved
scatterers, as we illustrated in the upper panel of Figure 2. However,
artificial multiple scattering can be introduced to improve the esti-
mation performance in a controlled manner. We proposed the use of
the artificial scatterer to improve the performance of multiple-input
multiple-output wireless communication systems [20] and to create
artificial multiple scattering for improving the estimation of scatter-
ers [3]. In this paper, we illustrated this idea in the lower panel of
Figure 2. The scatterer with a scattering coefficient larger than one
represents an active artificial scatterer, which receives, amplifies, and
transmits back its received wave. As a result, the strength of multiple
scattering between the scatterers is larger than what is possible be-
tween two passive ones, and the improvement in localization is also
much larger.

In Section 3, we made approximation (7) for far-field scatterers.
It also ignores phase differences of the received signals at array ele-
ments, hence is essentially a monostatic approximation as well. As
a result, FIM (13) has a rank of two. It is easy to show in polar coor-
dinates that only ranges of the two scatterers are identifiable. How-

ever, if the two scatterers are not located in the same direction, i.e.,−−−−→
x1 −α 6=

−−−−→
x2 −α, the FIM (11) will have a rank of four, thanks

to the Fisher information gain (14) provided by multiple scattering.
This indicates that additional information on directions of arrival can
be obtained from the information on ranges via the interaction be-
tween the two scatterers. Because of the monostatic approximation
(7) we employed in this paper, it represents only part of the multiple
scattering effect on the estimation of directions of arrival.

6. CONCLUSIONS

We compared analytically the FIMs for estimating locations of two
point scatterers when multiple scattering exists and does not ex-
ist. We showed that multiple scattering improves the estimation
of directions of arrival when the two scatterers are in far-field and
well resolved. When natural multiple scattering is weak, an artifi-
cial scatterer can be introduced to enhance the system performance.
Whether or not information on directions of arrival can help esti-
mating ranges with the existence of multiple scattering is worthy of
further investigation.

7. APPENDIX A: PROOF OF (11)

DH
FLDFL ≈ k2

[
(2τ∗1 g

H

1 ⊗ g
H

1 + τ∗1 τ
∗
2G
∗gH

1 ⊗ g
H

2 +

τ∗1 τ
∗
2G
∗gH

2 ⊗ g
H

1 )⊗−−−−→x1 −α− (τ∗1 τ
∗
2G
∗gH

1 ⊗ g
H

2 +

τ∗1 τ
∗
2Gg

H

2 ⊗ g
H

1 )⊗−−−−−→x1 − x2, (τ
∗
1 τ
∗
2G
∗gH

1 ⊗ g
H

2 +

τ∗1 τ
∗
2G
∗gH

2 ⊗ g
H

1 + 2τ∗2 g
H

2 ⊗ g
H

2 )⊗−−−−→x2 −α
−(τ∗1 τ

∗
2G
∗gH

1 ⊗ g
H

2 + τ∗1 τ
∗
2G
∗gH

2 ⊗ g
H

1 )⊗−−−−−→x2 − x1

]
×[

(2τ1g1 ⊗ g1 + τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−→x1 −α
T

−(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−−→x1 − x2
T
,

(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1 + 2τ2g2 ⊗ g2)⊗−−−−→x2 −α
T

−(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−−→x2 − x1
T ]

≈ k2
[
EFL1,1 EFL1,2

EFL2,1 EFL2,2

]
,

where

EFL1,1 ≈
[
(2τ∗1 g

H

1 ⊗ g
H

1 + τ∗1 τ
∗
2G
∗gH

1 ⊗ g
H

2 + τ∗1 τ
∗
2G
∗gH

2 ⊗ g
H

1 )

⊗−−−−→x1 −α− (τ∗1 τ
∗
2G
∗gH

1 ⊗ g
H

2 + τ∗1 τ
∗
2G
∗gH

2 ⊗ g
H

1 )⊗−−−−−→x1 − x2

][
(2τ1g1 ⊗ g1 + τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−→x1 −α

T

−(τ1τ2Gg1 ⊗ g2 + τ1τ2Gg2 ⊗ g1)⊗−−−−−→x1 − x2
T ]

≈ (4|τ1|2||g1||
4
F + 2|τ1|2|τ2|2|G|2||g1||

2
F||g2||

2
F)
−−−−→
x1 −α⊗

−−−−→
x1 −α

T

−(2|τ1|2|τ2|2|G|2||g1||
2
F||g2||

2
F)
−−−−→
x1 −α⊗

−−−−−→
x1 − x2

T

−(2|τ1|2|τ2|2|G|2||g1||
2
F||g2||

2
F)
−−−−−→
x1 − x2 ⊗

−−−−→
x1 −α

T

+(2|τ1|2|τ2|2|G|2||g1||
2
F||g2||

2
F)
−−−−−→
x1 − x2 ⊗

−−−−−→
x1 − x2

T

= (4|τ1|2||g1||
4
F + d)

−−−−→
x1 −α

−−−−→
x1 −α

T
− d −−−−→x1 −α

−−−−−→
x1 − x2

T

−d −−−−−→x1 − x2
−−−−→
x1 −α

T
+ d
−−−−−→
x1 − x2

−−−−−→
x1 − x2

T
.

In the second approximation, we used (A⊗B⊗C)(D⊗E⊗F ) =
AD ⊗BE ⊗ CF [17] and assumed that the two scatterers are well
resolved [11], in which case gH

1 g2 ≈ 0. EFL1,2, EFL2,1 and EFL2,2

can be derived analogously. 2
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