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ABSTRACT
In this paper, a new type of antenna array, termed the Ran-
dom Frequency Diverse Array (RFDA), is proposed to deter-
mine the target range and azimuth with low system complex-
ity. Each antenna in the array has a narrow bandwidth and
a randomly assigned carrier frequency. The beampattern of
the RFDA is thumbtack-like. Moreover, the new approach
can be considered a random sampling of target information in
the spatial-frequency domain, which coincides with the basic
concept of compressive sensing. With sparse recovery algo-
rithms, the RFDA can detect the targets and successfully es-
timate their range and azimuth. The performance of this new
approach is verified with numerical results.

Index Terms— Wideband antenna array, compressive
sensing, range azimuth estimation.

1. INTRODUCTION

Antenna arrays are quite popular in active sensing, for exam-
ple, in radar, sonar, and ultrasonic technologies [1]. Using an
antenna array, the beam can be flexibly steered, and the target
direction can be effectively identified. In most target-locating
applications, not only the direction but also the target range
is important [2]. High-accuracy range indication requires that
the signal transmitted and received by the array covers a suffi-
ciently wide bandwidth. However, most array-processing the-
ories and methods are based on the narrow-band assumption,
and the wide signal bandwidth creates difficulties for signal
processing and increases the system complexity [3].

Recently, the Frequency Diverse Array (FDA) technique
[4] has been introduced. By linearly shifting the carrier fre-
quencies across the array, the FDA can achieve a beampattern
that depends on both the range and azimuth, and maintain a
narrow bandwidth for each antenna. However, the range and
azimuth are coupled [4].

In this paper, a new type of antenna array, named the Ran-
dom Frequency Diverse Array (RFDA), is proposed to obtain
the decoupled target range and azimuth. In the RFDA, the
transceivers of every antenna remain narrowband, but their
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carrier frequencies are randomly arranged. It is shown that
the beampattern of the RFDA is thumbtack-like, which im-
plies that the range and azimuth are decoupled. Furthermore,
with sparse recovery algorithms, the RFDA can detect mul-
tiple targets and successfully determine their ranges and az-
imuths. The numerical results for both single- and multiple-
snapshot cases are presented to demonstrate the efficiency of
the RFDA.

Relation to prior work: To overcome the range-azimuth
coupling in FDA, many methods, such as MIMO [5, 6], sub-
array [7], and double pulse [8] methods, have been intro-
duced. However, these methods increase the system complex-
ity [5, 6, 7] or the observation time [8]. In the present study,
we regard the wideband antenna array as a sampling approach
for target information in the spatial-frequency domain, and
then formulate a random and sparse sampling scheme through
randomly assigning the carrier frequencies of antennas. The
corresponding mutual coherence [9] of the observing matrix
is remarkably small, which complies with the requirement of
compressive sensing. So a good performance without increas-
ing the transceivers’ bandwidth and system complexity can be
expected.

The remainder of this paper is organized as follows. In
Section 2, the system sketch is given, and the signal model
is constructed. The beampattern of the RFDA is derived in
Section 3. The target range and azimuth indication for both
single- and multiple-snapshot cases are formulated as sparse
recovery problems in Section 4. The numerical demonstra-
tions are provided in Section 5. Conclusions are drawn in the
final section.

2. SYSTEM SKETCH AND SIGNAL MODEL

Fig. 1 shows a cutline of the system sketch and target scenario
of the RFDA.

In the RFDA,N antennas are located symmetrically along
the x-axis at a constant inter-element distance d. The location
xn of the nth antenna is then

xn =

(
−N − 1

2
+ n

)
d, n = 0, 1, . . . , N − 1. (1)

Each antenna is connected with a narrow-band transceiver.
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Fig. 1. System sketch and target scenario of the RFDA.

In the RFDA, the carrier frequency of the transceiver is ran-
domly assigned as

fn = fc +mn∆f, (2)

where fc is the center frequency of the array, ∆f is the fre-
quency increment step, and mn is a random variable. In
this paper, mn are chosen to be independent identically dis-
tributed (i.i.d.), andmn ∼ g(mn) , where g(mn) is the proba-
bility density function. The interval ofmn in which g(mn) 6=
0 is determined as the entire bandwidth of the array. The ori-
gin of the x-axis is the phase center of the array. With this
definition, the transmitted waveform of the nth antenna is

sn(t) = ej2π(fc+mn∆f)t. (3)

For one ideal unit point target at range r and azimuth θ, with
the far-field assumption, the received echo of the nth antenna
is

rn(t; r, θ) = sn(t− 2
r + xn sin θ

c
) (4)

where c is the speed of light. If we demodulate the received
echo with the transmitted waveform and substitute (1) into
(4), the baseband echo is

bn(r, θ) = e−j
4π
c (fc+mn∆f)[r+(−N−1

2 +n)d sin θ]

≈ e−j
4π
c [fcr+(n−N−1

2 )fcd sin θ+mn∆fr]. (5)

The approximation in (5) holds if the phase error is less than
π/4.

Then, in the single snapshot case, the noise-free received
echo vector of one ideal unit target can be formulated by ar-
ranging all bn(r, θ) in the order

b(r, θ) = [b0(r, θ), b1(r, θ), . . . , bN−1(r, θ)]T . (6)

For multi-target, multi-snapshot and noisy scenario, if the
range, azimuth and reflection amplitude of the ith target at
the lth snapshot are ri, θi and αi(l) (the reflection amplitude
can vary from snapshot to snapshot because of the fluctuation
[2].), respectively, the echo vector of the lth snapshot is

r(l) =

P∑
i=1

αi(l)b(ri, θi) + n(l), l = 1, 2, . . . , L. (7)

where P and L are the target number and snapshot number,
and n(l) is the N × 1 additive receiver noise vector.

3. BEAMPATTERN OF THE RFDA

The beampattern of the RFDA is the system response of the
array beam that is formed at range r1, azimuth θ1 to a unit
amplitude target at range r2, azimuth θ2 [4],

β({r1, θ1}, {r2, θ2}) =
< b(r1, θ1) · b(r2, θ2) >

‖b(r1, θ1)‖2‖b(r2, θ2)‖2

=
1

N

N−1∑
n=0

b∗n(r1, θ1)bn(r2, θ2)(8)

where the asterisk denotes complex conjugation.
Substituting (5) into (8), the beampattern of the RFDA is

β({r1, θ1}, {r2, θ2}) =
1

N

N−1∑
n=0

ej
4π
c (fc+mn∆f)(∆r+xn∆µ)

= β(∆r,∆µ), (9)

where ∆r = r1 − r2 and ∆µ = sin θ1 − sin θ2. According
to the above derivation, the beampattern is determined by the
difference in the range and azimuth sine and independent of
the absolute range or azimuth. Letting p = 2∆f∆r/c, q =
2dfc∆µ/c, and ε = ∆f/fc, the beampattern can be further
simplified as

β(p, q) =
1

N
ej2π

p
ε

N−1∑
n=0

ej2π(n−N−1
2 )qej2πmnp. (10)

For the traditional FDA with linearly shifted carrier fre-
quencies (LFDA), the beampattern β(p, q)LFDA can be
achieved by alternating mn with n− (N − 1)/2 in (10).

β(p, q)LFDA =
1

N
ej2π

p
ε

N−1∑
n=0

ej2π(p−q)(n−N−1
2 ). (11)

Fig. 2 compares the beampatterns of LFDA (Fig. 2(a)) and
RFDA (Fig. 2(b)). The beampattern of the LFDA has high
sidelobe ridges, which implies that the range and azimuth are
coupled and the indication of target location is ambiguous.
However, the beampattern of the RFDA is thumbtack-like,
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Fig. 2. Comparison of beampatterns. (a) LFDA; (b) RFDA.

and the peak is located where p = 0 and q = 0, which im-
plies that the range and azimuth have successfully been de-
coupled and the target location can be uniquely and correctly
indicated.

In Fig. 2(b), we can also find that the beampattern of
RFDA has noise like sidelobe pedestals. Actually, the beam-
pattern can be regarded as a random process with respect to p
and q, and we have the following theorem,

Theorem 1 If the antenna number N is sufficiently large,
β(p, q) is asymptoticly complex Gaussian distributed, whose
mean β̄(p, q) and covariance matrix M(p, q) are

β̄(p, q) = E {β(p, q)} =
1

N
SNa (q)Φ(p)

[
cosα
sinα

]
, (12)

M(p, q) = E
{

[β(p, q)− β̄(p, q)][β(p, q)− β̄(p, q)]T
}

=

[
σ2
r cos2 α+ σ2

i sin2 α sinα cosα(σ2
r − σ2

i )
sinα cosα(σ2

r − σ2
i ) σ2

r sin2 α+ σ2
i cos2 α

]
(13)

where α = 2πp/ε, SNa (x) = sin(Nπx)/ sin(πx), Φ(x) is the
characteristic function of g(mn), and

σ2
r =

1

2N

[
1− Φ2(p)− SNa (2q)

N

(
Φ2(p)− Φ(2p)

)]
σ2
i =

1

2N

[
1− Φ2(p) +

SNa (2q)

N

(
Φ2(p)− Φ(2p)

)]
Furthermore, we can derive Proposition 1 for the side-

lobe’s magnitude.

Proposition 1 For azimuth difference q = 1
2N , the comple-

mentary cumulative distribution function of sidelobe’s mag-
nitude at {p, q} satisfies

Pr{|β(p, q)| > r} = Q1(
a

τ
,
r

τ
) (14)

where Q1(x, y) is the first-order Marcum Q-function,

Q1(x, y) =

∫ ∞
b

te−
t2+x2

2 I0(xt)dt

and a = 1
N |S

N
a (q)Φ(p)|, τ =

√
1

2N (1− Φ2(p)).

The proof of Theorem 1 and Proposition 1 is mainly in-
spired by the Lyapunov Central Theorem (LCT) [10]. Details
can be found in our full-length journal paper.

4. COMPRESSIVE SENSING FOR RANGE AND
AZIMUTH INDICATION

In the RFDA, the thumbtack-like mainlobe indicates that the
range and azimuth are uncoupled. However, in the multi-
target scenario, the noise-floor-like sidelobes may cause the
large target(s) to mask the weak target(s). In this paper, we
adopt sparse recovery algorithms for compressive sensing to
solve this problem.

The un-aliased range and azimuth extent are uniformly
divided into P and Q grids. (For the aliasing problem in
the FDA, the reader can refer to [5, 6] for more informa-
tion.) Thus, there are PQ range-azimuth pairs {ri, θi}, where
i = 1, 2, . . . , PQ in the un-aliased range and azimuth extent.

Define a PQ× 1 vector x(l), whose ith entry is the com-
plex reflection amplitude of the target at {ri, θi} in the lth
snapshot. The observing matrix Φ is N × PQ. The ith col-
umn of Φ is determined by (5) and (6), where r and θ in (6)
correspond to the range-azimuth pair {ri, θi}. Then, in the
single-snapshot case (termed the Single Measurement Vector
(SMV) scenario in the compressive sensing realm), the echo
can be rewritten in a matrix form

r(l) = Φx(l) + n (15)

where n is the receiver noise vector. If there are L > 1 snap-
shots, the echoes can be formed as a Multiple Measure Vector
(MMV) scenario,

R = ΦX + N, (16)

where R = [r(1), r(1), . . . , r(L)], X = [x(1),x(1), . . . ,x(L)],
and N is the receiver noise matrix.

The sparse recovery algorithms estimate x or X by ex-
ploring its sparsity. A number of sparse recovery algorithms
can achieve the most “sparse” solution of (15) or (16) with
acceptable measurement errors. For the SMV scenario, the
sparsest estimate of x(l) is

min ‖x(l)‖0, subject to ‖r(l)−Φx(l)‖2 ≤ σl (17)

where ‖ · ‖0 is the number of non-zero entries.
For the MMV scenario, we select ‖ · ‖2,0 (the number of

row vectors with non-zero l2 norms) to maintain the consis-
tency of the targets’ locations in all snapshots. The estimate
of X is

min ‖X‖2,0, subject to ‖R−ΦX‖F ≤ σL (18)
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where ‖ · ‖F is the Frobenius norm. In (17) and (18), σl and
σL are the error tolerances determined by the noise power.

In compressive sensing, the correct recovery can be guar-
anteed with high probability if the observing matrix Φ has
a small mutual coherence [9]. The mutual coherence is de-
fined as the maximum normalized inner product of different
columns of the observing matrix. Comparing this definition
with (8), the mutual coherence is equal to the highest side-
lobe in the beampattern. Fig. 2 shows that the highest side-
lobe level of the RFDA is substantially lower than that of the
LFDA. This property indicates that the RFDA is suitable for
compressive sensing.

In this paper, the Subspace Pursuit (SP) [11], FOCUSS
[12], and their MMV extensions (Generalized Subspace Pur-
suit (GSP) [13] and M-FOCUSS [14]) are adopted to recover
the targets in both the SMV and MMV scenarios. The demon-
stration and performance comparison are provided in the next
section.

5. NUMERICAL RESULTS

Simulations are conducted to evaluate the range and azimuth
indication performance of the RFDA. In the simulation,
mn is discretely uniformly distributed as g(mn) = 1/M ,
where M is a positive integer, and mn ∈ {−M−1

2 ,−M−1
2 +

1, . . . , M−1
2 }. In this case, the total bandwidth of the CFDA

is (M − 1)∆f . The other system parameters are as follows:
fc = 3GHz, N = 128, M = 128, ∆f = 1MHz, d = 0.05m.

The first simulation gives an example of target indication.
There are three targets at different ranges and azimuths ( r1 =
10m, θ1 = −30o; r2 = 70m, θ2 = 5o; r3 = 120m, θ3 =
60o.). The magnitudes of Targets 1 and 2 are identical and
10 dB larger than that of Target 3. The SNR of Target 3 is 0
dB (measured at the input of each receiver). Only one snap-
shot is used. The beamforming result is shown in Fig. 3(a).
The ranges and azimuths of Targets 1 and 2 are correctly in-
dicated, but Target 3 is too weak compared with the first two
and is covered by their sidelobes. However, in the sparse re-
covery result (Fig. 3(b), using the SP algorithm), all three tar-
gets are successfully detected, and the locations are correctly
indicated.

The second simulation is performed to evaluate the de-
tection performance of different sparse recovery algorithms.
There are two targets with identical reflection amplitudes but
different locations. The input SNR varies from -24 dB to 6
dB. Successful detection is defined as the coincidence of the
estimated and true support sets. The successful detection rate
for each SNR point is obtained using 1000 Monte-Carlo trials.
Results are illustrated in Fig. 4. In the comparison between
SMV and MMV, the detection performances of the MMV are
better for both types of algorithms. In the comparison among
recovery algorithm types, FOCUSS and M-FOCUSS outper-
form their subspace pursuit counterparts in both SMV and
MMV scenarios.

Fig. 3. Target range and velocity indication using the RFDA.
(a) Beamforming result; (b) Sparse recovery result.
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Fig. 4. Successful detection rates of different sparse recovery
algorithms.

6. CONCLUSION

We propose a new array approach to indicate the range and
azimuth of multiple targets without coupling. In the RFDA,
each antenna has a narrow bandwidth, and the carrier fre-
quency is randomly assigned across the array. The RFDA
can be considered a random sparse sampling of target infor-
mation in both the frequency and spatial domains; hence, it
provides compressive sensing of both the range and azimuth
simultaneously. With sparse recovery algorithms, the RFDA
can detect targets with large magnitude differences and cor-
rectly indicate their locations. The performance of the RFDA
is demonstrated with numerical results.
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