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ABSTRACT
In this paper, we propose an online radar imaging scheme that re-
covers a sparse scene and removes the multipath ringing induced by
the front wall in a Through-the-Wall-Imaging (TWI) system without
prior knowledge of the wall parameters. Our approach uses online
measurements obtained from individual transmitter-receiver pairs to
incrementally build the primary response of targets behind the front
wall and find a corresponding delay convolution operator that gen-
erates the multi-path reflections available in the received signal. In
order to perform online sparse imaging while removing wall clutter
reflections, we developed a deconvolution extension of the Sparse
Randomized Kaczmarz (SRK) algorithm that finds sparse solutions
to under- and over-determined linear systems of equations. Our
scheme allows for imaging with nonuniformly spaced antennas by
building an explicit delay-and-sum imaging operator for each new
measurement. Moreover, the active memory requirements remain
small even for large scale MIMO systems since the imaging oper-
ators are only constructed for individual transmitter-receiver pairs.
We test our approach on a simple FDTD simulated room with inter-
nal targets and demonstrate that our method successfully eliminates
multipath reflections while correctly locating the targets.

Index Terms— Through-the-wall-imaging, multi-path elimina-
tion, sparse recovery, blind deconvolution, Kaczmarz iterations

1. INTRODUCTION

Through-the-wall-imaging (TWI) is a promising and widely investi-
gated technique for detecting objects inside enclosed structures [1].
In a typical scenario, a source emits an electromagnetic (EM) radar
pulse which propagates through the outside wall of the structure, re-
flects off the internal targets, and then propagates back to a receiver
antenna array [2]. The composition of the scene is then visualized
by numerically generating an image that represents the positions and
reflectivities of the objects in it. However, depending on the dielec-
tric permittivity and permeability of the walls, the received signal
is often corrupted with indirect multipath reflections from the front
wall ringing as well as reflections off the internal walls, which result
in ghost artifacts that clutter the reconstructed image. Suppressing
such multipath reflections is an important topic that can significantly
improve the quality of TWI and enhance the applicability of the tech-
nique.

The centrality of multipath suppression has resulted in the de-
velopment of many practical solutions to the problem. Earlier works
considered the problem of multipath elimination by assuming a per-
fect knowledge of the reflective geometry of the scene. For ex-
ample, Setlur et al. [3, 4] have developed multi-path signal mod-
els to associate the multi-path ghosts to the true target locations,

thereby improving the radar system performance by reducing false
positives in the original SAR image. Chang [5] proposed a physics
based approach to multi-path exploitation where the imaging ker-
nel of the back-projection method is designed to focus on specific
propagation paths of interest. Leigsnering et al. [6] combined target
sparsity with multi-path modeling to achieve further improvements
in the quality of TWI. Specifically, their approach incorporates the
sources of multi-path reflections of interest into a sparsifying dic-
tionary and solves a group sparse recovery problem to locate the
targets from randomly subsampled, frequency stepped SAR data.
The current trend in literature is to formulate TWI as a blind sparse-
recovery problem, where scene parameters are not known. Mansour
and Liu [7] proposed a multipath-elimination by sparse inversion
(MESI) algorithm that removes the clutter by iteratively recovering
the primary impulse responses of targets followed by estimation of
corresponding convolution operators that result in multi-path reflec-
tions in the received data. More recently, Leigsnering et al. [8] have
extended their earlier sparsity-based muti-path exploitation frame-
work by allowing for uncertainties in wall-parameters that are solved
via an alternating optimization scheme.

In this paper, we propose an online sparse imaging with blind de-
convolution scheme that jointly estimates a sparse target scene and
removes the multipath reflections induced by front wall ringing. We
specifically address in section 2 a received signal model where mul-
tipath reflections of all targets are generated by a convolution kernel
that may change between different receivers. This setup is particu-
larly suitable for large standoff TWI. Our proposed online scheme
can be perceived as a stochastic gradient approach for sparse im-
age reconstruction. We present in section 3 the proposed algorithm
which relies on a modification of the sparse randomized Kaczmarz
method of [9] to jointly perform sparse recovery and kernel deconvo-
lution. Finally, we demonstrate the performance of our algorithm in
section 4 using a simple FDTD simulated TWI setup with relatively
large standoff distance. The numerical results highlight the ability of
our approach to correctly suppress the wall ringing effect and detect
the true targets, even those that exhibit weak reflections.

2. FRONT WALL RINGING MODEL

We consider a radar setup with Ns transmitting sources and Nr
receiving antennas. Let s(t) be the time-domain waveform of the
pulse that is transmitted by each source, and denote by gp(t, nr, ns)
the primary impulse response of the scene, excluding multi-path re-
flections, viewed at receiver nr ∈ {1, . . . Nr} as a reflection of a
pulse transmitted from source ns ∈ {1, . . . Ns}. Also denote by
gm(t, nr, ns) the impulse response of the multi-path reflections due
to the front wall ringing. Using a standard time-domain represen-
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tation of the received signal model, we express the received signal
r(t, nr, ns) as follows

r(t, nr, ns) = s(t) ∗ (gp(t, nr, ns) + gm(t, nr, ns)) , (1)

where ∗ is the convolution operator.
Without loss of generality, suppose that there are K target

objects in the scene, each inducing a primary impulse response
gk(t, nr, ns) indexed by k ∈ {1 . . .K}. The multiples’ impulse
response can then be modeled by the convolution of a delay kernel
d(t, nr, ns) with the primary impulse response gk(t, nr, ns) of each
target object in the scene, such that,

gp(t, nr, ns) =
K∑
k=1

gk(t, nr, ns),

gm(t, nr, ns) = d(t, nr, ns) ∗
(

K∑
k=1

gk(t, nr, ns)

)
.

(2)

Here we assume that, for a particular transmitter-receiver pair
(nr, ns), all primary target reflections experience the same delay
convolution kernel d(t, nr, ns) when generating the wall ringing.
This assumption is suitable when there is a large standoff distance
between the antennas and the front wall. The delay kernel can be
regarded as a weighted Dirac delta train

d(t) =
∑
p

wpδ(t− tp),

where tp > 0 is the time delay at which the multiple reaches the
receiver from the pth multi-path source, wp is the attenuation weight
of the pth path.

We extend the definition of the delay kernel d(t, nr, ns) to that
of an activation function that generates both the primary and multiple
impulse responses by allowing tj ≥ 0. Consequently, the received
signal model can be written as the superposition of the primary re-
sponses of all K objects in the scene convolved with an activation
function as follows

r(t, nr, ns) = s(t) ∗
K∑
k=1

d(t, nr, ns) ∗ gk(t, nr, ns), (3)

where d(t, nr, ns) is independent of k.

3. ONLINE MULTIPATH ELIMINATION

We follow a two stage stochastic gradient approach similar in spirit
to [10]. Given a measurement r(t, nr, ns), we first estimate the
activation kernel d(t, nr, ns). Then, we compute a stochastic gra-
dient update of the image based on r(t, nr, ns) and the estimated
d(t, nr, ns).

3.1. Multipath elimination as a nonlinear inverse problem

In a blind through the wall imaging scenario, we have no informa-
tion about the wall parameters or the number of targets present in
the scene. Our objective is to identify the true target locations and
remove the ghost targets using only the received signals r(t, nr, ns)
and the source waveform s(t).

Denote by rnr,ns ∈ RNt the received signal at transmitter and
receiver locations (nr, ns), where Nt is the number of time sam-
ples recorded by a receiver for each transmission. Also denote by
dnr,ns ∈ RNt the vectorized time-domain activation function. Let
S : RNt → CNf be the source waveform matched-filtering operator

that maps rnr,ns to its frequency domain matched-filtered response
r̂nr,ns = Srnr,ns , where Nf is the number of sampled frequency
bins. We discretize the scene into an Nx ×Ny ×Nz grid and con-
struct the imaging operator Gnr,ns : CNf → CNxNyNz that maps
r̂nr,ns to the image x, such that

Gnr,ns(ω, l) = eiω(‖φ(l)−φ(nr)‖2+‖φ(l)−φ(ns)‖2)/c, (4)

where ω is the frequency in radians, l is a spatial index inNx×Ny×
Nz , c is the speed of the wave in free space, and φ(·) ∈ R3 gives the
spatial coordinate vector of scene index l, receiver nr , and transmit-
ter ns. The received signal model in (3) can now be expressed as a
function of the image x as rnr,ns = dnr,ns ∗ SHGH

nr,ns
x.

Denote by Aj the Nt ×NxNyNz matrix Aj = SHGH
j where

j indexes transmitter-receiver pairs (nr, ns) ∈ [Nr] × [Ns]. Also,
let rj = rnr,ns for the transmitter-receiver pair indexed by j. The
combined imaging and multipath removal problem can now be for-
mulated as the following nonlinear inverse problem

min
x,dj∀j

1

2

∑
j

‖rj − dj ∗Ajx‖22. (5)

For known activation kernels dj , problem (5) becomes a large
overdetermined least squares problem for which a multitude of
solvers exist. We discuss below one particularly efficient solution
using the Kaczmarz method.

3.2. The Kaczmarz method

The Kaczmarz method [11] is an algorithm for finding the solution x
of large overdetermined systems of linear equations Ax = r, where
A ∈ CM×N has full column rank and r ∈ CM . The algorithm
sequentially cycles through the rows of A, orthogonally projecting
the solution estimate at iteration j onto the solution space given by a
row or block of rows Aj , such that

xj = xj−1 +AH
j
rj − 〈Aj ,xj−1〉
‖Aj‖22

. (6)

Several works in the literature have shown that randomizing the
row selection criteria improves the convergence performance of the
Kaczmarz method [12]. It was also shown in [13] that the ran-
domized Kaczmarz method reaches an error threshold dependent on
the matrix A in the case when the measurements are noisy. More
recently, the randomized Kaczmarz update rule was shown to be an
instance of stochastic gradient descent [14].

In [9], a sparse randomized Kaczmarz (SRK) algorithm was
proposed that projects the iterate xj−1 onto a subset of rows of A
weighted by a diagonal matrix Wj , i.e.

xj = xj−1 +WjA
H
j
rj − 〈AjWj ,xj−1〉
‖AjWj‖22

. (7)

The weighting is based on identifying, in each iteration j, a support
estimate Tj for x corresponding to the largest k̂ entries of the iter-
ate xj , where k̂ is some predetermined sparsity level. The weight-
ing gradually scales down the entries of Aj that lie outside of Tj
by a weight equal to 1/

√
j. As the number of iterations becomes

large, the weight 1√
j
→ 0 and the algorithm begins to resemble

the randomized Kaczmarz method applied to the reduced system
ATxT = r, where AT is a subset of the columns of A at which
the sequence of sets Tj converges. It was demonstrated empiri-
cally in [9] that the SRK method is capable of finding sparse solu-
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tions to both over and under-determined linear systems, and enjoys
faster convergence compared to the randomized Kaczmarz algorithm
of [12]. The SRK update iteration can then be used to incrementally
compute the image x by setting rj = rnr,ns and Aj = Anr,ns

using different transmitter-receiver pairs (nr, ns) in every iteration
j.

3.3. Sparse Kaczmarz with Multipath Deconvolution

Define the linear operator H : RNt×Nt → RNt that computes the
non-circular convolution of two vectors u,v ∈ RNt by summing
the anti-diagonal entries of their outer product matrix uvT . Conse-
quently, the adjointHT ofH applied to a vector v repeats the entries
of v along the anti-diagonal entries of an Nt ×Nt matrix.

We cast the sparse deconvolution problem as the following non-
convex constrained optimization problem

min
x,dj∀j

1
2

∑
j

‖rj −H
(
(Ajx)d

T
)
‖22

subject to ‖x‖0 ≤ p, ‖d‖0 ≤ q,
(8)

where j indexes transmitter-receiver pairs (nr, ns) ∈ Nr × Ns,
and p and q are predetermined bounds on the sparsities of x and d,
respectively. In what follows, denote by x∗ the target sparse image
of the scene.

Algorithm 1 presents an iterative two-stage heuristic for finding
local solutions to (8) based on weighted gradient update for dj and
sparse Kaczmarz updates for x. In the first stage, we fix x = xj−1

and solve for dj that minimizes

dj = argmin
d

1

2
‖rj −H

(
(Ajxj−1)d

T
)
‖22 s.t. ‖d‖0 ≤ q. (9)

Problem (9) can be solved using iterative hard thresholding [15] for
example. Here, we adopt a milder update rule where all components
smaller than the top q are weighted down by 1/

√
l, where l is the

inner loop iteration number. In the second stage, we set d = dj and
deconvolve it from the received signal to produce an estimate of the
multipath suppressed signal r̂j . We then solve for xj that minimizes

xj = argmin
x

1

2
‖Wj(x− xj−1)‖22 s.t. r̂j = Ajx. (10)

The inputs to the algorithm are the measurements rj , the imag-
ing operators Aj , the activation function sparsity q, the image do-
main sparsity p, and step sizes η and η̂. The algorithm uses a sparse
initial estimate of the image x0 = Thard

(
AH

1 r1; τ
)

which we com-
pute as a hard-thresholding of AH

1 r1 using some large threshold τ .
The support function of a vector x that finds the index set of the
largest p entries in magnitude of x is denoted by supp(x|p). The up-
date rule in (10) is an oblique projection of xj−1 onto the hyperplane
r̂j = Ajx. This is in contrast with the RK and SRK updates which
orthogonally project xj−1 onto r̂j = Ajx and r̂j = AjWjx, re-
spectively. Notice that using the oblique projection, the entries of
xj on the complement T c of the support set T are updated with the
scaling 1/

√
j. This may result in residual coefficients in T c that

should be zero but are not suppressed, which leads to decreasing the
angle θWAj between WjA

H
j and xj−1 − x∗, compared to the an-

gle θAj between AH
j and xj−1 − x∗. Since the Kaczmarz update

steps are essentially projections along some weighted Aj , we want
to maximize the angle between xj−1 − x∗ and the projection direc-
tion. Therefore, we compute proxies for the cosines of θWAj and
θAj and update xj along the direction with the largest angle.

Algorithm 1 Sparse Kaczmarz with Clutter Deconvolution

1: Input rj , Aj , p, q, η, η̂, maxiter
2: Output x, dj ∀j ∈ {1, . . . NrNs}
3: Initialize j = 0, d0 = [1, 0, . . . 0]T , x0 = Thard

(
AH

1 r1; τ
)

4: repeat
5: j = j + 1
6: yj = Ajxj−1

7: dj = dj−1

8: for l = 1 to maxiter do
9: T = supp(dj |q)

10: Q = I/
√
l, QT = 1

11: dj = Q
(
dj + η HT (rj − dj ∗ yj)yj

)
12: end for
13: r̂j = 0
14: for l = 1 to maxiter do
15: r̂j = r̂j + η̂ HT (rj − dj ∗ r̂j)dj
16: end for
17: T = supp(xj |p)
18: W = 1/

√
j, WT = 1

19: if ‖r̂j−AjWxj−1‖2
‖AjW‖F

>
‖r̂j−Ajxj−1‖2
‖Aj‖F

then
20: xj = xj−1 +

1
‖AjW‖2F

WAH
j (r̂j −Ajxj−1)

21: else
22: xj = W

(
xj−1 +

1
‖Aj‖2F

AH
j (r̂j −Ajxj−1)

)
23: end if
24: until j ≥ NrNs

4. EXPERIMENTAL RESULTS

We asess the performance of our algorithm for identifying true target
locations inside a room using measurements from an antenna array
located outside the room. We generate a simple scene using a two-
dimensional FDTD simulator. The scene dimensions are 3m×3m
with the antenna array centered at position (0.3, 1.5) and a 1.5m
standoff distance from the front wall of the room. Fig. 1a illustrates
the locations of the antenna array relative to the room which con-
tains 7 cylindrical targets. The walls are composed of two layers,
with a thickness and relative permittivity of 3cm and εr = 10 for
the outer layer, and 1.2cm and εr = 5 for the inner layer, respec-
tively. The antenna array is composed of 21 receiving elements with
a 3cm spacing and a single transmitting element placed at the center
of the array. The transmitter emits a Gaussian pulse with a 13GHz
bandwidth and a mode located at 6.5GHz. The algorithm input pa-
rameters are set to: p = 0.02NxNy , q = 0.01Nt, η = 2/Nt, and
η̂ = 1/

√
Nt.

Fig. 1b–1f shows the results of imaging the scene from 1b mea-
surements of the targets obtained without having a room wall, and
1c–1f measurements of the targets with the room walls. The true
locations of the seven targets are outlined by the red circles. Fig. 1c
shows the multipath artifacts that arise when we reconstruct the im-
age using standard backprojection after time gating the initial reflec-
tion from outside the front wall. On the other hand, using sparse re-
covery without deconvolving the multipath kernel results in Fig. 1d,
which shows only a slight reduction in the multipath artifacts. Next
we use Algorithm 1 to deconvolve the multipath kernel and recon-
struct the image. Figs. 1e and 1f illustrate the reconstructed images
using Algorithm 1 from sequential and randomized antenna loca-
tions, respectively. Notice that randomizing the antenna locations
improves the ability to suppress multipath reflections compared to
imaging from sequential measurements. The detected convolution
kernel is shown in Fig. 2.
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Fig. 1. (a) Schematic of the simulation layout where the color bar indicates the relative permittivity. (b)–(e) Imaging results in dB of the
simulated scene with the targets outlined by red circles for (b) measurements without the room walls, and measurements with the room walls
using (c) standard backprojection, and (d) sparse imaging using sparse Kaczmarz updates. (e)–(f) show the recovery using sparse Kaczmarz
with clutter deconvolution where the measurements are (e) sequential and (f) randomized.
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Fig. 2. Recovered multipath convolution kernel using Algorithm 1
from randomized antenna locations.

5. DISCUSSION AND CONCLUSION

We attribute the different imaging performance between randomized
and sequential measurements to the high correlation between the se-
quential measurements that is overcome by randomization. In both
cases, it can be seen that the multipath reflections due to the side
walls remain visible in the image. This is due to the delay convo-
lution multipath model that we use which specifically targets front
wall ringing. Without knowledge of the side wall orientation and
position as is assumed in [6, 8], it is not possible to compensate for
the side wall multipath effect.

The sparse randomized Kaczmarz with clutter deconvolution al-
gorithm attempts to solve a structured version of problem (5). The
difficulty in joint online imaging and deconvolution is that a sin-
gle measurement rj does not admit a unique representation in xj
and dj . However, the stationarity of the scene allows us to find a
common sparse image x that best matches the measurements while
relegating the variability between measurements to the convolution
operator d. In this respect, we emphasize the importance of random-
izing the order of measurements since randomization mitigates the
correlations between subsequent measurements. Our online scheme
is memory efficient especially in the case where the antennas are
not located on a uniform grid. Moreover, our signal model defines
a single convolution kernel that maps all targets to their multipath
reflections for a particular receiver. This is in contrast to MESI [7]
which relies on the availability of all measurements and models a
distinct multipath kernel for each target common to all receivers.
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