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ABSTRACT

This paper investigates the waveform design problem of wide-
band cognitive radar for the detection of extended targets in
which the knowledge of target impulse response and interfer-
ence is imprecise. We resort to a maximin approach to design
the waveform that is robust to the model uncertainties, i.e.,
we optimize the waveform to maximize the worst-case signal
to interference plus noise ratio (SINR) over the uncertainty
region. We show that the maximin waveform design prob-
lem can be formulated into a convex optimization problem.
Results indicating the robustness of the proposed method are
provided via numerical simulations.

Index Terms— Waveform design, extended target, model
uncertainty, robust design, signal to interference plus noise
ratio (SINR).

1. INTRODUCTION

Cognitive radar is a new concept that has received consider-
able interests in recent years (see, e.g., [1, 2] and the refer-
ences therein). Cognitive radar system can adjust its trans-
mit waveform and receive filter adaptively based on the prior
knowledge of targets and the environment, thus has great po-
tentials in enhancing the performance of current radar system-
s. There are two key ingredients in cognitive radar systems:
waveform design in the transmitter and adaptive processing in
the receiver. Herein, we focus on the waveform design prob-
lem of cognitive radar system.

In order to enhance the detection performance of extended
targets for wideband cognitive radar, we consider the wave-
form optimization to maximize the signal to interference plus
noise ratio (SINR). Similar methodologies have been adopt-
ed in several studies (but with different signal models, see,
e.g., [3–9] and the references therein). However, current de-
sign methods based on maximizing SINR mostly assume pre-
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cise knowledge of both target and interference, while in prac-
tice the a priori knowledge of them might be inaccurate. As a
consequence, the mismatch of prior knowledge might degrade
the performance of the designed waveform.

In this paper, we consider the waveform design problem
of wideband cognitive radar system for the detection of ex-
tended targets, in which the prior knowledge of the target im-
pulse response and statistics of the interference is assumed
to be imprecise. In order to design the waveform that is ro-
bust to the model mismatch of the target impulse response and
interference covariance matrix, we formulate a waveform de-
sign problem based on maximizing the worst-case SINR over
the uncertainty region. We show that, we can efficiently find
the globally optimal solution of the robust waveform design
problem through solving a convex optimization problem.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

Consider a wideband cognitive radar system with s(t) denot-
ing the transmit waveform. For an extended target, which
occupies multiple range cells, its received signal after down-
conversion can be written as [10]

y(t) =

∫ τ2

τ1

h(τ)s(t− τ)dτ + n(t), (1)

where h(τ) is the target impulse response, τ1 and τ2 are the
minimum and maximum two-way propagation delay of the
target, respectively (i.e., the target size in the line of sight is
about ∆L = c(τ2 − τ1)/2, where c is the speed of light),
and n(t) is a signal-independent interference in the receiver
(including thermal noise, possible intentional jamming and
external disturbance).

For simplicity, we digitalize y(t) and consider the follow-
ing discrete-time model

y = h ∗ s+ n, (2)

where h = [h1, · · · , hP ]
T with the pth element representing

the target scattering coefficient in the pth range cell, P is the
number of range cells that the target occupies (P ≈ ∆L/B
with B denoting the bandwidth), ∗ denotes the operator of
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convolution, s = [s1, · · · , sL]T , L is the code length. We can
also write (2) in an equivalent matrix form

y = Hs+ n, (3)

where H is a Toeplitz matrix sharing the following expression

H =



h1 0 · · · 0

h2 h1
. . . 0

...
. . . . . . 0

hP hP−1 · · · 0

0 hP
. . . 0

...
...

...
...

0 · · · · · · hP


∈ C(L+P−1)×L. (4)

The target detection can be formulated as the following
binary hypothesis testing problem{

H0 : y = n
H1 : y = Hs+ n

. (5)

Let R = E(nnH) be the interference covariance matrix.
Assume that h1, · · · , hP are deterministic (i.e., not random),
then it can be easily verified that the probability of false alarm
and the probability of detection is given by

PFA =
1

2
erfc(T/

√
sHHHR−1Hs), (6)

PD =
1

2
erfc(

T√
sHHHR−1Hs

−
√
sHHHR−1Hs), (7)

where erfc(x) = 2√
π

∫∞
x

e−t2dt is the complementary error
function and T is the detector threshold.

Note that PD can also be written as

PD =
1

2
erfc

{
erfc−1(2PFA)−

√
sHHHR−1Hs

}
(8)

Since the complementary error function erfc(x) is mono-
tonically decreasing with x, then for a fixed probability of
false alarm, the optimal waveform that maximizes the SINR
also achieves the largest probability of detection. As a con-
sequence, the waveform design for the optimal detection of
extended targets can be formulated as

max
s

SINR = sHHHR−1Hs

s.t. sHs ≤ P0, (9)

where P0 is the total available energy.
It is straightforward to obtain that the optimal waveform

under the energy constraint is given by

sopt =
√
P0P(HHR−1H), (10)

where P(HHR−1H) denotes the eigenvector of HHR−1H
associated with its largest eigenvalue.

We can observe from (10) that, the design of wavefor-
m for the optimal detection of extended target requires the
knowledge of the second-order statistics of the interference
R as well as the target impulse response vector h. In prac-
tice, R and h can be obtained by some cognitive methods
(e.g., R can be obtained by setting the radar operating in the
passive mode so that the radar can collect the signals which
only contain thermal noise and possible interference, and h
(or equivalently, H) can be obtained by previous estimation-
s). However, both estimation of R and h might be inaccurate.
The consequence of the use of mismatched prior knowledge
in the waveform design in (10) is the performance degrada-
tion. Therefore, when the precise knowledge of target im-
pulse response and interference covariance matrix is unavail-
able, robust techniques have to be developed to improve the
detection performance.

3. ROBUST WAVEFORM DESIGN METHODS

First we introduce two uncertainty sets to describe the uncer-
tainty of H and R, respectively, i.e.,

H ∈ S = {H ∈ T |∥H−H0∥F ≤ ε}, (11)

where T denotes the set of (L+P −1)×L Toeplitz matrices
defined similarly to (4) and H0 is the presumed target scatter-
ing matrix associated with the prior target impulse response
h0. In addition, R lies in an uncertainty set which is given by

R ∈ R = {R ∈ H+
L+P−1|∥R−R0∥F ≤ η}, (12)

with H+
L+P−1 denoting the set of (L+ P − 1)×(L+ P − 1)

positive definite matrices and R0 the presumed interference
covariance matrix. In order to find a meaningful robust solu-
tion, we assume that ε < ∥H0∥F and η ≤ ∥R0∥F so that S
and R include nonzero elements.

Similar to that in [11], we resort to a maximin approach
to design the robust waveform, i.e., we optimize the wavefor-
m to maximize the worst-case SINR in the uncertainty region
defined by S and R, so that the optimized waveform is ro-
bust to both the target and interference model uncertainties.
The corresponding robust waveform design problem can be
formulated as the following maximin optimization problem

max
s

min
H∈S,R∈R

sHHHR−1Hs

s.t. sHs ≤ P0. (13)

Obviously, the output SINR by using the optimal robust wave-
form s⋆ (i.e., the solution of (13)) is guaranteed to be at least
p⋆ in the uncertainty sets S and R, where p⋆ is the optimal
value of (13).

In order to find s⋆, we can observe that, the optimization
problem in (13) is equivalent to the following joint optimiza-
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tion problem:

max
s,w

min
H∈S,R∈R

|wHHs|2

wHRw

s.t. sHs ≤ P0, (14)

where w is the weight in the receiver side and for fixed s,R
and H, the optimal weight is given by

wopt = R−1Hs. (15)

Next we consider the inner minimization problem of (14)
with respect to (w.r.t.) R ∈ R, or equivalently, we consider

max
R∈R

wHRw (16)

Note that for R ∈ R, we have

wHRw = wHR0w +wH∆Rw, (17)

where ∆R is a matrix satisfying ∥∆R∥2F ≤ η2. As a result,

wHRw ≤ wHR0w + ηwHw = wH(R0 + ηI)w, (18)

where the equality holds if and only if ∆R = ηwwH/∥w∥2.
Thus the optimization problem in (14) can be reformulated as

max
s,w

min
H∈S

|wHHs|2

wH(R0 + ηI)w

s.t. sHs ≤ P0. (19)

Interestingly, we only need diagonal loading on the interfer-
ence covariance matrix R to improve the robustness when the
knowledge of R is inaccurate.

By using the equivalence between (13) and (14), we can
similarly rewrite (19) equivalently into

max
s

min
H∈S

sHH−1(R0 + ηI)−1Hs

s.t. sHs ≤ P0, (20)

Let R̃ = R0 + ηI. Note that adding a constant term to
the cost function of (20) will not change its optimal solution.
Therefore, we consider the following cost function

sHHHR̃−1Hs− γP0, (21)

where γ is a constant larger than the largest eigenvalue of
HHR̃−1H, denoted by λmax(H

HR̃−1H). By using the re-
sult that the optimal waveform has to satisfy sHs = P0, we
can also write (21) by

sHHHR̃−1Hs− γP0 = sHHHR̃−1Hs− γsHs

= sH(HHR̃−1H− γI)s. (22)

Lemma 1 (Sion’s minimax theorem [12]) Let U be a com-
pact convex space and V be a convex space. Let f(u,v) de-
note a real-value function defined on U × V . If f is quasi-
convex w.r.t. u, for ∀v ∈ V , and quasi-concave w.r.t. v, for
∀u ∈ U , then

min
u

max
v

f(u,v) = max
v

min
u

f(u,v). (23)

since γ > λmax(H
HR̃−1H), then HHR̃−1H − γI is

negative definite. Consequently, based on the definition of
convexity [13], (22) is a convex function of H when s is fixed
while a concave function of s for fixed H. Using Sion’s mini-
max theorem as well as the equivalence between (22) and the
cost function of (20), we can interchange the order of the min-
imization and maximization in (20), i.e., we can reformulate
the robust waveform design problem by

min
H∈S

max
s

sHHHR̃−1Hs.

s.t. sHs ≤ P0. (24)

We can observe that the inner maximization of (24) is
achieved when s is an eigenvector of HHR̃−1H correspond-
ing to its largest eigenvalue. As a result, we can recast (24)
as

min
H∈S

λmax(H
HR̃−1H), (25)

with the optimal robust waveform given by

s⋆ =
√

P0P((H⋆)HR̃−1H⋆), (26)

where H⋆ is the optimal solution of (25). Next we show we
can formulate (25) into a convex optimization problem. By
introducing an auxiliary variable t, (25) can be written as

min
t,H∈S

t

s.t. t ≥ λmax(H
HR̃−1H). (27)

It is also equivalent to

min
t,H∈S

t

s.t. HHR̃−1H ≼ tI. (28)

Lemma 2 (Schur complement theorem [14]) Let M be a
matrix which can be partitioned as

M =

[
M11 M12

MH
12 M22

]
, (29)

then M ≻ 0 if and only if M22 ≻ 0 and M11−M12M
−1
22 M

H
12 ≻

0.

According to Schur complement theorem, HHR̃−1H ≼ tI
holds if and only if [

tI HH

H R̃

]
≽ 0. (30)
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Therefore, we can further write (28) by

min
t,H∈S

t

s.t.
[
tI HH

H R̃

]
≽ 0. (31)

Since S is a convex set and the constraint in (31) is also con-
vex, (31) is a convex optimization problem and its globally
optimal solution can be obtained efficiently with polynomial
time [13], by public domain software, e.g., CVX [15, 16].

4. NUMERICAL EXAMPLES

Consider a cognitive radar system with the length of the trans-
mitted waveform L = 20. The extended target occupies
P = 3 range bins, with presumed target impulse response
vector h0 = [3, 20, 1]T . The prior interference covariance
matrix is modeled by an AR(1) process with the one-lag co-
efficient ρ = 0.5.

Fig.1 shows the worst-case output SINR of the orthogo-
nal waveform, the designed waveform based on prior knowl-
edge of target scattering coefficients and interference covari-
ance matrix, and the proposed robust waveform against d-
ifferent transmit energy, where ε = ϵ1∥H0∥F, ϵ1 = 0.3,
η = η1∥R0∥F, η1 = 0.25, the orthogonal waveform is gen-
erated by a phase-coded waveform of random phases. We
can observe that, when the prior knowledge is imprecise, the
performance of the waveform designed based on prior knowl-
edge degrades and is even worse than that of orthogonal wave-
form. However, the proposed robust waveform outperforms
both the waveform designed based on prior knowledge and
the orthogonal waveform.
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Fig. 1. SINR of three types of waveform against transmit
energy. ϵ1 = 0.3, η1 = 0.25.

Fig.2 presents the worst-case output SINR of the three
types of waveform versus different size of target uncertain-
ty, where P0 = 1 and η1 is fixed to be 0.25. Fig.3 shows the
worst-case output SINR of the three types of waveform ver-
sus different size of uncertainty of R, where P0 = 1 and ϵ1

is fixed to be 0.3. Both figures illustrate that the performance
of all three waveforms degrades with increasing size of un-
certainty region. In addition, owing to the robustness of the
proposed algorithm with respect to the model uncertainties,
the proposed waveform shows clear superiority over the other
two waveforms.

5. CONCLUSION

We proposed a robust waveform design method for wideband
cognitive radar, in which the prior knowledge of the target
and interference is imprecise. We considered the waveform
optimization to maximize the worst-case SINR over the un-
certainty region of target impulse response and interference
covariance matrix. We showed that, the diagonal loading of
the prior interference covariance matrix contributed to the ro-
bustness of the proposed waveform. Moreover, the optimal
waveform could be obtained through solving a convex op-
timization problem. Numerical examples demonstrated the
effectiveness of the proposed method.
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Fig. 2. SINR of three types of waveform against different
model uncertainty. P0 = 1, η1 = 0.25.
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Fig. 3. SINR of three types of waveform against different
model uncertainty. P0 = 1, ϵ1 = 0.3.
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