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ABSTRACT

In this paper, we address the problem of detecting the signal
of interest in the presence of Gaussian clutter with symmetric
spectrum. To this end, we exploit the spectral properties of
the clutter to transfer the binary hypothesis test problem from
complex domain to real domain. Then, we devise and assess
a detection strategy based on the so-called two-step General-
ized Likelihood Ratio Test (GLRT) design procedure. Finally,
a preliminary performance assessment, conducted by resort-
ing to simulated data, has confirmed the effectiveness of the
newly proposed detector compared with the traditional state-
of-the-art counterparts which ignore the spectrum symmetry.

Index Terms— Adaptive Detection, Ground Clutter,
Generalized Likelihood Ratio Test (GLRT), Symmetric Spec-
trum.

1. INTRODUCTION

Adaptive detection of a signal, known up to a scaling fac-
tor, in the presence of homogeneous Gaussian clutter with
unknown spectral properties, has received an increased atten-
tion in radar signal processing community. This is a prob-
lem of composite hypothesis testing in which the GLRT is
the most widely accepted method of solution [1, 2]. Starting
from the lack of a Uniformly Most Powerful (UMP) test for
the quoted problem, other design criteria have been investi-
gated as an alternative to the GLRT in [3–5]. For instance,
in [3] the Rao test is used to derive a detector that exhibits en-
hanced rejection capabilities of mismatched signals [6]. All
the above solutions suppose that a set of secondary data, free
of signal components and sharing the same spectral proper-
ties of the data under test (primary data), is available to esti-
mate the clutter covariance matrix. However, secondary data
are often contaminated by power variations over range, clutter
discretes, and other outliers, which drastically reduce number
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of homogeneous secondary data. Adaptive detection of sig-
nals buried in clutter environments for which the secondary
data volume is not large is referred to as sample-starved prob-
lem [7–9].

Strategies conceived to cope with such situations ex-
hibit a common denominator that consists in incorporating
the available a priori information into the detector design
(knowledge-aided paradigm). Precisely, in [10–12] the au-
thors show that significant performance improvements can be
achieved exploiting the structure information about the clut-
ter covariance matrix. Another example is provided in [13],
where the Bayesian approach is employed assuming that the
unknown covariance matrix of the clutter obeys a suitable
distribution. More recently, the Bayesian framework is also
used together with the structural information on the clutter
covariance matrix as shown in [14], where the clutter is mod-
eled as a multi-channel auto-regressive process with a random
cross-channel covariance matrix.

Another source of a priori information, which can be ex-
ploited in the design of adaptive algorithms, is the possible
symmetry in the clutter spectral characteristics. In fact, it
is well-known that ground clutter observed by a stationary
monostatic radar often exhibits a symmetric Power Spectral
Density (PSD) centered around the zero-Doppler frequency
and whose integral (clutter power) depends on the type of illu-
minated background [15]. This property has been corroborat-
ed by diverse statistical analyses on experimentally measured
data [16, 17] and implies that clutter autocorrelation function
is real-valued and even. This represents an important struc-
ture which would reduce the number of nuisance parameters
to estimate and can be exploited at the design stage.

Following the above guideline, in this work we focus on
ground clutter dominated environments and design an adap-
tive decision scheme which leverage on the symmetric PSD
constraint for the clutter. We first transform the problem from
the complex domain to the real domain and then solve the new
hypothesis test resorting to the so-called two-step design pro-
cedure [2]. Precisely, this design procedure consists in eval-
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uating the GLRT assuming that the clutter covariance matrix
is known and maximizing over the other unknown parame-
ters. An appropriate estimate of the clutter covariance matrix
based on the secondary data data alone is then substituted in-
to this test. The preliminary performance analysis confirms
the superiority of the considered architecture over their con-
ventional counterparts which do not capitalize on the real and
even PSD of the clutter.

The remainder of this paper is organized as follows. Sec-
tion 2 addresses the problem formulation, Section 3 deals
with the design of the detector, and Section 4 provides illus-
trative examples. Finally, Section 5 contains some concluding
remarks.

1.1. Notation

In the sequel, vectors and matrices are denoted by boldface
lower-case and upper-case letters, respectively. Symbols
detp¨q and Trp¨q denote the determinant and the trace of a
square matrix, respectively. The Euclidean norm of a vector
is denoted by } ¨ }. Symbol IN represents the pN ˆ Nq-
dimensional identity matrix. As to the numerical sets, R
is the set of real numbers, RNˆM is the set of pN ˆ Mq-
dimensional real matrices (or vectors if M “ 1), C is the
set of complex numbers, and CNˆM is the set of pN ˆMq-
dimensional complex matrices (or vectors if M “ 1). The
real and imaginary parts of a complex vector or scalar are de-
noted by <p¨q and =p¨q, respectively. Symbols p¨qT , and p¨q:

stand for transpose, and conjugate transpose, respectively.
Finally, the acronym iid means independent and identically
distributed while the symbol Er¨s denotes statistical expecta-
tion.

2. PROBLEM FORMULATION

In this section, we introduce the detection problem at hand
and show that, under the assumption of a symmetric spec-
trum for the clutter, it is equivalent to another decision prob-
lem dealing with real vectors and matrices. To this end, let us
begin by formulating the initial problem in terms of a binary
hypothesis test. Specifically, we assume that the considered
sensing systems acquires data from N ě 2 channels which
can be spatial and/or temporal. The echoes from the cell un-
der test are properly pre-processed, namely, the received sig-
nals are downconverted to baseband or an intermediate fre-
quency; then, they are sampled and organized to form a N -
dimensional vector, r say. We want to test whether or not r
contains useful target echoes assuming the presence of a set of
K secondary data. Summarizing, we can write this decision

problem as follows
$

’

’

’

’

&

’

’

’

’

%

H0 :

"

r “ n,
rk “ nk, k “ 1, . . . ,K,

H1 :

"

r “ αv ` n,
rk “ nk, k “ 1, . . . ,K,

(1)

where

• v “ v1 ` jv2 P C
Nˆ1 with }v} “ 1, v1 “ <tvu, and

v2 “ =tvu is the nominal steering vector;

• α “ α1 ` jα2 P C with α1 “ <tαu and α2 “

=tαu represents the target response which is modeled
in terms of an unknown deterministic factor accounting
for target reflectivity and channel propagation effects;

• n “ n1 ` jn2 P C
Nˆ1 and nk “ n1k ` jn2k P

CNˆ1, k “ 1, . . . ,K, with n1 “ <tnu, n2 “ =tnu,
n1k “ <tnku, and n2k “ =tnku, are iid complex
normal random vectors with zero mean and unknown
positive definite covariance matrix M0 P R

NˆN ; it
is important to observe here that, since the clutter has
zero mean and exhibits a power spectral density with
symmetric symmetry, M0 is real-valued.

Now, recall that a zero-mean complex Gaussian vector x “
x1 ` jx2 P C

N , x1 “ <txu and x2 “ =txu, is said to be
complex normal [6] if

Erx1x
T
1 s “ Erx2x

T
2 s, (2)

Erx1x
T
2 s “ ´Erx2x

T
1 s, (3)

and, under the above assumption, the covariance matrix of x
can be written as

Erxx:s “ 2pErx1x
T
1 s ´ jErx1x

T
2 sq P C

NˆN . (4)

In (1), we have modeled the clutter in terms of complex
normal random vectors with zero mean and real covariance
matrix, which, in turn, implies that the cross-covariances
between the real and imaginary parts of n and nk, k “

1, . . . ,K, are zero. Thus, we can claim that n1, n2 and n1k,
n2k, k “ 1, . . . ,K, are iid Gaussian vectors with zero mean
and covariance matrix

M “
1

2
M0 P R

NˆN . (5)

As a consequence, (1) is equivalent to the following problem
$
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H0 :

"

z1 “ n1, z2 “ n2,
z1k “ n1k, z2k “ n2k, k “ 1, . . . ,K,

H1 :

$

&

%

z1 “ pα1v1 ´ α2v2q ` n1,
z2 “ pα1v2 ` α2v1q ` n2,
z1k “ n1k, z2k “ n2k, k “ 1, . . . ,K.

(6)
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The above problem is formally equivalent to (1). As a mat-
ter of fact, for the latter problem, the relevant parameter to
decide for the presence of a target is α, or, equivalently, the
pair pα1, α2q. After transformation leading to (6), the formal
structure of the decision problem is again

H0 : pα1, α2q “ p0, 0q, H1 : pα1, α2q ‰ p0, 0q. (7)

3. DETECTOR DESIGN

A possible way to solve problem (6) is to resort to the two-step
GLRT-based design criterion [2]. The rationale of the design
procedure is the following: first assume that the covariance
matrix M is known and derive the GLRT based on primary
data. Then, an adaptive detector is obtained by substituting
M by an appropriate estimate based on the secondary data.
Following this rationale in the section we design an adaptive
detector for the problem at hand.

As preliminary step towards the receiver derivation,
let us define the following quantities. Specifically, de-
note by Z “ rz1 z2s the primary data matrix and ZS “

rz11 . . . z1K z21 . . . z2Ks the overall matrix of the training
samples. Under the assumption that M is known, the GLRT
is given by

max
α1,α2

f1pZ;M , α1, α2q

f0pZ;Mq

H1

ż
H0

η, (8)

where fjpZ, ¨q is the probability density functions (PDF) of
primary data under Hj , j “ 0, 1, namely

f0pZ;Mq “
1

p2πqN detpMq

ˆ exp

"

´
1

2
TrrM´1ZZT

s

*

,

f1pZ;M , α1, α2q “
1

p2πqN detpMq

ˆ exp
!

´
1

2
Tr

“

M´1
`

u1u
T
1 ` u2u

T
2

˘‰

)

, (9)

where

u1 “ z1 ´ α1v1 ` α2v2,

u2 “ z2 ´ α1v2 ´ α2v1. (10)

Substituting (9) in (8), after some algebraic manipulations,
the natural logarithm of (8) can be recast as

zT1 M
´1z1 ` zT2 M

´1z2 ´ min
α1,α2

fpα1, α2q
H1

ż
H0

η, (11)

where η is the suitable modification of the threshold in (8),
and

fpα1, α2q “ uT1 M
´1u1 ` uT2 M

´1u2. (12)

In the next step, our objective is to minimize fpα1, α2q with
respect to α1 and α2. To this end, we evaluate the derivatives
with respect to α1 and α2, which are given by

Bfpα1, α2q

Bα1
“ ´2vT1 M

´1u1 ´ 2vT2 M
´1u2,

Bfpα1, α2q

Bα2
“ 2vT2 M

´1u1 ´ 2vT1 M
´1u2. (13)

Setting to zero the two derivatives of (13), yields

pα1 “
vT1 M

´1z1 ` vT2 M
´1z2

vT1 M
´1v1 ` vT2 M

´1v2

,

pα2 “
vT1 M

´1z2 ´ vT2 M
´1z1

vT1 M
´1v1 ` vT2 M

´1v2

. (14)

Substituting (14) in (11), the GLRT can be recast as

`

pα2
1 ` pα2

2

˘ `

vT1 M
´1v1 ` vT2 M

´1v2

˘

H1

ż
H0

η. (15)

The most natural estimator of M in Gaussian clutter is the
Sample Covariance Matrix (SCM) based on the secondary da-
ta, namely, S “ ZSZ

T
S . Plugging S in place of M into (15),

the Two-Step GLRT (TS-GLRT) is finally given by
`

vT
1 S

´1z1 ` vT
2 S

´1z2

˘2
`
`

vT
1 S

´1z2 ´ vT
2 S

´1z1

˘2

vT
1 S

´1v1 ` vT
2 S

´1v2

H1

ż
H0

η.

(16)

As a final remark, transferring problem (1) from complex
domain to real domain, is equivalent to doubling the number
of secondary data and, hence the TS-GLRT can work when
K ě N{2 instead of K ě N which is required by the tra-
ditional detectors in [1–3]. Moreover, we expect that the TS-
GLRT exhibits superior detection performance with respect
to their counterparts which do not capitalize on the real and
even PSD of the clutter.

4. PERFORMANCE ASSESSMENT

This section is devoted to the performance assessment of the
newly proposed detector in terms of Probability of Detection
(Pd). To this end, we compare the TS-GLRT with several
traditional detectors, including the GLRT [1], the Adaptive
Matched Filter (AMF) [2], and the Rao test [3]. We make
use of standard Monte Carlo counting techniques and evaluate
the thresholds necessary to ensure a preassigned value of Pfa
resorting to 100{Pfa independent trials. Moreover, the Pd
values are estimated over 104 independent trials, and Pfa “
10´4.

Clutter model: We assume a clutter-dominated environ-
ment with the covariance matrix given by

M0 “ σ2
nIN ` σ

2
cM c, (17)
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Fig. 1. Pd versus SNR for the TS-GLRT, the GLRT, the AMF
and the Rao test; N “ 8, K “ 16, and Pfa “ 10´4.
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Fig. 2. Pd versus SNR for the TS-GLRT, the GLRT, the AMF
and the Rao test; N “ 8, K “ 12, and Pfa “ 10´4.

where σ2
n “ 1, σ2

c ą 0 is evaluated assuming a Clutter-to-
Noise Ratio (CNR) of 30 dB, and the (i, j)th element of M c

is given by ρ|i´j| with ρ “ 0.9. Finally, the Signal-to-Clutter
Ratio (SCR) is defined as

SCR “ |α|2v:M´1
0 v. (18)

In Fig. 1, we study the performance of four different de-
tectors assuming N “ 8 and K “ 16. As it can be seen from
the figure, the TS-GLRT guarantees a Pd gain with an order
of 2.5 dB with respect to the GLRT at Pd “ 0.9. Moreover,
the above-mentioned Pd gain can be increased by decreasing
K, as shown in Fig. 2, where we plot the Pd of the considered
detectors for the same system parameters as in Fig. 1, but for
K “ 12. Precisely, in this case the Pd gain at Pd “ 0.9 be-
tween the TS-GLRT and the GLRT increases to 5.5 dB. Thus,
for the problem of a binary hypothesis test with real-valued
clutter covariance, transferring it from complex domain to re-
al domain is a very effective means to improve performance
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Fig. 3. Pd versus for the TS-GLRT; N “ 8, K ă N , and
Pfa “ 10´4.

of detection, especially in the presence of a small number of
secondary data.

Finally, in Fig. 3 we plot Pd against SCR assuming K ă

N . In particular, we set N “ 8 and two cases of K, i.e.,
K “ 6 and K “ 4. We only consider the TS-GLRT, due to
the fact that the other three traditional detectors can not work
under this condition. As we expected, the larger K, the better
Pd the TS-GLRT achieves.

5. CONCLUSIONS

In this paper, we have proposed a decision scheme for adap-
tive detection in Gaussian clutter with the symmetric PSD
constraint. In order to derive the new detector, we assumed
that a set of secondary data, free of signal components and
sharing the same spectral properties of the clutter as the pri-
mary data, is available. Moreover, we transfer the binary hy-
pothesis test problem from complex domain to real domain,
and resort to the two-step GLRT-based design procedure. The
performance assessment has demonstrated that the proposed
receiver can significantly outperform its natural competitors
which do not capitalize on the real and even PSD of the clut-
ter, especially in a severely heterogeneous scenario where a
very small number of secondary data is available.
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