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ABSTRACT

Eigenstructure based self-calibration methods usually employ
MUSIC algorithm or its variations to estimate DOAs. But
ambiguous DOA estimates may be obtained since the spatial
spectra of these methods might be seriously disturbed by un-
known mutual coupling. In this work, we try to mitigate the
perturbations caused by unknown mutual coupling in eigen-
structure based self-calibration. We analyse the property of
mutual coupling matrix and find that part of the mutual cou-
pling inducing false peaks in the spatial spectrum can be pre-
dicted. Thereby, a normalized spatial spectrum is proposed to
automatically remove these false peaks. The proposed spec-
trum is applicable to some types of existing algorithms with a
low cost of computation. Since most of the false peaks in the
original spatial spectrum are removed, a more robust DOA es-
timate can be expected. The effectiveness of the normalized
spatial spectrum is validated via numerical experiments.

Index Terms— Direction-of-arrival (DOA) estimation,
uniform linear array (ULA), mutual coupling, array self-
calibration

1. INTRODUCTION

DOA estimation using an array of sensors is a classical prob-
lem that arises in radar, sonar, wireless communications, and
radio astronomy. The super-resolution DOA estimation meth-
ods, such as the eigenstructure methods and the maximum
likelihood (ML) algorithms [1], can estimate directions of
closely spaced spatial sources which cannot be distinguished
by traditional techniques. However, this advantage is based
on exact knowledge of array manifold, which is often not
available in practice due to unavoidable array modeling er-
rors. These errors, e.g., induced by unknown mutual coupling
or array gain/phase perturbations, can cause substantial per-
formance degradation for super-resolution algorithms [2–5].
Thereby, array calibration and robust direction finding (DF)
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techniques are essential in all practical systems for DOA esti-
mation.

When unknown mutual coupling exists, DOA estimation
with arbitrary arrays remains difficult. However, this prob-
lem may be solvable for centrosymmetric arrays, such as u-
niform linear arrays (ULAs) and uniform circular arrays (U-
CAs), whose mutual coupling matrices (MCM) are banded
(or circulant) and symmetric Toeplitz and can be represent-
ed by a small number of unknown coefficients. Friedlander et
al. initially employed this property of centrosymmetric arrays
and proposed an iterative self-calibration method [6]. Since
then, plenty of self-calibration methods were proposed based
on this property. For example, Ye et al. [7, 8] proved that if
a group of auxiliary sensors is available, then MUSIC algo-
rithm can achieve accurate direction finding without mutual
coupling compensation. This result, which is named as aux-
iliary method, is then extended to different scenarios [9–11].
The applications of these methods are limited by requiring a
large amount of auxiliary sensors. Another branch of eigen-
structure methods, named as rank-reduction (RARE) estima-
tor [12–14], can make use of the whole array. However, the
spectra of RARE methods are susceptible to mutual coupling
effects, which may lead to ambiguous DOA estimation. Ef-
forts are made to distinguish [13, 14] and suppress [15, 16]
the false peaks in those spectra. The method in [15] requires
a multidimensional search of DOAs and is computationally
expensive. The recursive RARE (R-RARE) [16] transforms
the multidimensional search problem to a sequence of one-
dimensional search problems to reduce computational cost.
But it still suffers from false peaks when the mutual coupling
is strong. It should be mentioned that self-calibration based
on sparse representation has attracted wide attention recent-
ly [17–21]. These methods usually requires strong assump-
tions such that there applications are restricted.

In this paper, we consider eigenstructure based DOA
estimation in a ULA with unknown mutual coupling. By
analysing the property of MCM, we find that part of the mu-
tual coupling inducing false peaks in the RARE spectrum can
be predicted. Thereby, we propose a new spatial spectrum
which can filter out these predictable peaks automatically.
The new spectrum shares two advantages. First, it can be
directly used in existing algorithms with little computational
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cost. Second, since many false peaks are filtered out, it is
more robust to unknown mutual coupling than the original
spatial spectrum.

This paper is organized as follows. The signal model and
problem statement are given in Section II. Section III analyses
the properties of MCM and proposes the normalized spatial
spectrum. Simulations are performed in Section IV to apply
the proposed spectrum in existing algorithms and compare it
with the original spatial spectrum. Section V concludes the
paper.

Our notations are as follows. Lowercase boldface and up-
percase boldface are used for vectors and matrices, respec-
tively. For a given matrix X , we use rank[X], |X|, and
[X]p,q to denote rank, determinant, and the q-th elements of
the p-th row of the matrix X . For any vector and matrix,
{·}H and ∥·∥ denote the Hermitian (conjugate) transpose and
2-norm, respectively. 0 is a vector of zeros. ⌈x⌉ rounds x to
the nearest integer towards infinity.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider M narrow-band far field signals impinging on an
ULA of N sensors. The standard baseband model for the
array output is given by

x(k) = CAs(k) + n(k), (1)

where C and A denote the MCM and array manifold,
s(k) is an M × 1 vector of impinging signal waveform-
s, and n(k) is a vector of additional Gaussian noise with
zeros mean and variance σ2. The array manifold A =[
a(θ̃1),a(θ̃2), . . . ,a(θ̃M )

]
is an N ×M matrix, the steering

vector a(θ̃m) is a function of DOA θ̃m, and Sr = {θ̃m}Mm=1

is the set of real DOAs. The MCM C is modeled as
an N-dimensional banded and symmetric Toeplitz matrix
to approximate the real-world mutual coupling effect [6].
The first column of C is denoted by [cT ,0T ]T , where
c = [c1, c2, · · · , cL] is the vector of mutual coupling effects
and 1 = c1 > |c2|, · · · , |cL| > 0.

We make the standard assumptions underlying the eigen-
structure based methods for direction finding.
1)M < N and the columns of CA are linear independent.
2) The signals and noise are stationary and ergodic over the
observation period.
3) The signals are uncorrelated and the noise is uncorrelated
with the signals.

2.2. Self-calibration Based on MUSIC Spectrum

Many eigenstructure methods are variations of the MUSIC al-
gorithm, which can be summarized in three main steps. First,

the noise subspace is constructed based on the eigenvalue de-
composition of the covariance matrix of array output

Rx = E
[
x(k)xH(k)

]
= U sΛsU

H
s + σ2

nUnU
H
n , (2)

where Λs is a diagonal matrix of the M principle eigenvalues,
U s is a matrix consisting of the M corresponding eigenvec-
tors, and Un is a matrix consisting of the remaining N −M
eigenvectors. The noise subspace is then spanned by the vec-
tors of Un. Based on the above decomposition, the second
step makes use of the subspace property

UH
n CA = 0, (3)

and constructs MUSIC spectrum

P (θ) =
1

∥UH
n Ca(θ)∥2

. (4)

Finally, if C is given, the DOA estimation can be obtained at
the peaks of the MUSIC spectrum.

This algorithm can provide accurate DOA estimation [2,
6]. However, when C is unknown, the spectrum (4) does
not work any more. In this case, self-calibration methods in
[12–14] utilize the banded and symmetric Toeplitz structure
of the MCM, i.e.,

Ca(θ) = Q(θ)c, (5)

and modify the MUSIC spectrum (4) to

Pm(θ) =
1

minc{
∥∥UH

n Q(θ)c
∥∥2} , (6)

where Q(θ) = Q1(θ) +Q2(θ) and

[Q1(θ)]p,q =

{
[a(θ)]p+q−1, ∀ p+ q ≤ N + 1
0, otherwise (7)

[Q2(θ)]p,q =

{
[a(θ)]p−q+1, ∀ p ≥ q ≥ 2
0, otherwise (8)

Spectrum (6) is based on the observation that ∥UH
n Q(θ)c∥ ≥

0 and equality holds if θ ∈ Sr and c = c0, where c0 is the
vector of real mutual coupling coefficients. This spectrum,
named as RARE spectrum, is proposed for self-calibration of
UCAs. The simulations in [14] show that it may yield false
peaks, especially when L > ⌈N

2 ⌉. The authors of [15, 16]
extended RARE to the multi-dimensional form

Pmm(θ) =
1

minc{
∑K

k=1 ∥U
H
n Q(θk)c∥2}

, (9)

and applied it in ULAs, where K is an integer and 1 ≤ K ≤
M . However, the proposed methods are still at risk of false
peaks if mutual coupling is strong.
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3. A NORMALIZED SPATIAL SPECTRUM FOR
SELF-CALIBRATION

In this section, we construct a spectrum that is more ro-
bust to unknown mutual coupling and can be applied in the
above mentioned methods with a low cost of computaion. To
achieve this goal, we first point out some properties of Q(θ)
by the following proposition.

Proposition 3.1 In a ULA where the distance between neigh-
boring sensors is half-wavelength, the N×L matrix Q(θ) has
the following properties:
1. If L ≤ ⌈N

2 ⌉, Q(θ) is full column rank.
2. If ⌈N

2 ⌉ < L ≤ N , then ⌈N
2 ⌉ ≤ rank[Q(θ)] ≤ L and

rank[Q(θ)] < L only if θ ∈ Sn, where Sn = {θ|θ =
arcsin( k

N ), k = −N,−N + 1, · · · , N}.

The proposition can be proved by induction, which is
omitted here due to the page limit. By proposition 3.1, when
L > ⌈N

2 ⌉ and ∃θf ∈ Sn such that Q(θf ) is rank deficient, we
can select cf from the null space of QH(θf )Q(θf ) such that
UH

n Q(θf )cf = 0, ∀Un. In this case, a false peak appears
in the spectrum (6) if θf is not a real DOA. Notice that the
number of these false peaks might be as large as 2N + 1,
which will cause serious ambiguous DOA estimate. There-
fore, using a small L will suppress false peaks caused by rank
deficiency of Q(θ) and yield a more robust DOA estimate.
However, choosing a smaller L also introduces more model-
ing errors and hence DOA estimation errors in real systems,
especially when the mutual coupling effect is strong. When
L > ⌈N

2 ⌉ is selected, one can just throw the peaks at θf if
Q(θf ) is rank deficient. But this approach may miss the real
sources around θf .

To eliminate the false peaks caused by rank deficiency,
we normalize the spectrum (6) by ∥Q(θ)c∥ and obtain the
following spatial spectrum

Pn(θ) =
1

f(θ)
, with f(θ) = min

{c,c1=1}

∥UH
n Q(θ)c∥2

∥Q(θ)c∥2
. (10)

The optimal solution of (10) is cθ = v1/[v1]1, where v1

denotes the eigenvector corresponding to the smallest gen-
eralized eigenvalue of matrices Q(θ)HUnU

H
n Q(θ) and

Q(θ)HQ(θ). By denoting qθ = cθ

∥Q(θ)cθ∥ , Pn(θ) in (10)
can be rewritten as

Pn(θ) =
1

∥UH
n Q(θ)qθ∥2

, with ∥Q(θ)qθ∥ = 1. (11)

Hence, we call Pn(θ) the normalized spatial spectrum.
The performance of this new spectrum can be illustrated

in three aspects. First, it will not miss peaks at real DOAs. It
is seen that f(θ) ≥ 0 and equality holds when θ ∈ Sr and
cθ = c0, where c0 denotes the vector of real mutual coupling
coefficients. Therefore, peaks will appear in Pn(θ) at real

DOA locations unless Q(θ)c0 = 0. Second, Pn(θ) can elim-
inate false peaks caused by rank deficiency of Q(θ), which is
obvious according to (11). Last, but not least, it will not in-
troduce new false peaks comparing with the RARE spectrum
(6). According to (10), a false peak appears in Pn(θ) if one of
the following two conditions is satisfied, ∥UH

n Q(θ)c∥2 = 0
or ∥Q(θ)c∥2 goes to infinity. The latter cannot happen since
∥Q(θ)∥ and ∥c∥ are upper bounded. And the former also
leads to a false peak in the RARE spectrum.

By defining

W n(θ) =
K∑

k=1

Q(θk)
HUnU

H
n Q(θk),

W q(θ) =
K∑

k=1

Q(θk)
HQ(θk), (12)

the multi-dimensional spectrum (9) can also be normalized
and obtained by

Pmn(θ) =
∥W

1
2
q (θ)cθ∥2

∥W
1
2
n (θ)cθ∥2

, (13)

where cθ = v1/[v1]1, and v1 denotes the eigenvector corre-
sponding to the smallest generalized eigenvalue of matrices
W n(θ) and W q(θ).

4. SIMULATION RESULTS

In this section, we demonstrate the performance of the nor-
malized spatial spectrum by applying it in existing algorithm-
s. Consider a 9-element ULA whose elements are monopole
and vertically polarized with 10m long and 20m spacing and
central frequency is 8MHz. The vector of mutual coupling co-
efficients is derived based on the electromagnetic theory with
its value c̄ = [1, 0.046 − 0.428i,−0.116 + 0.213i, 0.117 −
0.119i,−0.108 + 0.066i, 0.096 − 0.031i,−0.084 + 0.007i,
0.072 + 0.010i]. The MCM C is formed as a banded and
symmetric Toeplitz matrix by a truncated version of c̄, i.e.,
c = [c̄1, c̄2, · · · , c̄L]. The additional Gaussian noise is tem-
porally and spatially white. The number of snapshots is 100.

In the first experiment, we examine proposition 3.1 and
verify whether the proposed spectra (10) and (13) can sup-
press false peak caused by rank deficiency. We apply (10)
and (13) in two methods, the reduced rank (RARE) method
and the recursive-RARE (R-RARE) method [16], respective-
ly. Consider M = 3 equal power sources impinging form
[−10◦, 8◦, 23◦]. The signal-to-noise ration (SNR) is 20dB.
Since L ≤ N − M is a necessary condition for successful
self-calibration in the two methods, we set L = 6.

Fig. 1(a) plots the curve of minimum eigenvalue of Q(θ)
varies with θ, i.e., ”λ1(Q)”, and compares the spectra RARE
(4) and RARE based on (10). In the figure, Sr and Sn denote
the set of real DOAs and the set defined in proposition 3.1,
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Fig. 1. Comparison of spatial spectra for a 9-element U-
LA using 100 snapshots. (a) Minimum eigenvalue of Q(θ),
spectra of RARE and RARE based on (10) (b) Spectra of R-
RARE [16] and R-RARE based on (13)

respectively. We can observe that the minimum eigenvalue of
Q(θ) equals zero only when θ ∈ Sn, which coincides with
proposition 3.1. It is also seen that peaks exist at directions
of signal sources in both spectra. Moreover, the RARE based
on (10) can erase the false peaks caused by rank deficiency
of Q(θ) in original RARE and does not yield any new false
peak. To remove the remaining false peaks, we apply the R-
RARE method.

Fig. 1(b) compares the R-RARE spectrum [16] with
R-RARE spectrum based on (13), which are tagged as ”R-
RARE” and ”R-RARE+(13)”, respectively. One can observe
that R-RARE spectrum fails and the R-RARE spectrum based
on (13) can give correct DOA estimate. This is because the
initialization step in the R-RARE method is based on the
RARE spectrum in Fig. 1(a) which has been ruined by the
false peaks at Sn. The results of simulation 1 illustrate that
the normalized spectrum can provide more robust DOA esti-
mation when L ≥ ⌈N

2 ⌉.
In the second simulation, we evaluate the self-calibration

performance of the proposed spectrum. Specifically, four d-
ifferent subspace algorithms are considered: MUSIC without
array calibration, the auxiliary method in [8], the R-RARE
method in [16], and the R-RARE method based on (13). We
test these algorithms with M = 3 equal power sources lo-
cates at [−8◦, 10◦, 15◦] and consider L = 5 ≤ ⌈N

2 ⌉ and
L = 6 > ⌈N

2 ⌉, respectively. When L > ⌈N
2 ⌉, the R-RARE

algorithms apply a pre-estimating step to mitigate the impact
of false peaks, which pre-estimate the DOAs by using MUSIC
without array calibration and consider the true directions lie
with in a half-power beam width centered at the pre-estimates.
In the auxiliary method, the length of mutual coupling is as-
sumed to be 3 and the rest mutual coupling coefficients are
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Fig. 2. Performances of four methods at different SNRs with
100 snapshots. (a) Probability of resolution against SNR (b)
RMSE of DOA estimation against SNR

taken as modeling errors, such that the M + 2L − 1 ≤ N
constraint is satisfied [8]. All the results to be shown were
averages over 200 trials.

Fig. 2 illustrates the probability of resolution and the root
mean square error (RMSE) against SNR, respectively. Here,
the signals are assumed to be successfully resolved if the bi-
ases of the DOA estimates are less than 2◦, and the RMSE
is calculated based on estimates of successful resolutions. In
the figure, dash lines and solid lines correspond to L = 5 and
L = 6, respectively, and ”CRB” denotes Cramer-Rao bound
of DOA estimation.

We can observe in Fig. 2(a) that the probabilities of reso-
lution of different methods increase with SNR except that of
the auxiliary method [8]. The reason is the resolution ability
of auxiliary method is weakened by a reduced array aperture
and modeling errors. It is also seen that the probability of
resolution of ”R-RARE+(13)” is stable and larger than that
of the R-RARE, which decreases drastically when L > ⌈N

2 ⌉.
In Fig. 2(b), the RMSE of the MUSIC method and auxiliary
method is lower bounded for modeling errors, while that of
the R-RARE methods decrease with the increasing of SNR.
There is a gap between the RMSE curves of R-RARE meth-
ods and the CRB. This gap can be reduced by embedding the
estimated mutual coupling coefficients in the eigenstructure
based algorithms.

5. CONCLUSIONS

Based on the analysis of MCM, we proposed a normalized
spatial spectrum and applied it in the RARE and R-RARE
methods. Theoretical analysis and simulation results show
that new spectrum can suppress the false peaks caused by rank
deficiency and increase the probability of resolution.

3089



6. REFERENCES

[1] H. Krim and M. Viberg, “Two decades of array signal
processing research: the parametric approach,” IEEE
Signal Process. Mag., vol. 13, no. 4, pp. 67–94, Jul
1996.

[2] B. Friedlander, “A sensitivity analysis of the music al-
gorithm,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 38, no. 10, pp. 1740–1751, Oct 1990.

[3] B. Friedlander, “Sensitivity analysis of the maximum
likelihood direction-finding algorithm,” IEEE Trans.
Aerosp. Electron. System., vol. 26, no. 6, pp. 953–968,
Nov 1990.

[4] A.L. Swindlehurst and T. Kailath, “A performance anal-
ysis of subspace-based methods in the presence of mod-
el errors. i. the music algorithm,” IEEE Trans. Signal
Process., vol. 40, no. 7, pp. 1758–1774, Jul 1992.

[5] A.L. Swindlehurst and T. Kailath, “A performance anal-
ysis of subspace-based methods in the presence of mod-
el error. ii. multidimensional algorithms,” IEEE Tran-
s. Signal Process., vol. 41, no. 9, pp. 2882–2890, Sep
1993.

[6] B. Friedlander and A.J. Weiss, “Direction finding in the
presence of mutual coupling,” IEEE Trans. Antennas
Propag., vol. 39, no. 3, pp. 273–284, Mar 1991.

[7] Ye Z. and Liu C., “On the resiliency of music direction
finding against antenna sensor coupling,” IEEE Tran-
s. Antennas Propag., vol. 56, no. 2, pp. 371–380, Feb
2008.

[8] Ye Z., Dai J., Xu X., and Wu X., “Doa estimation for
uniform linear array with mutual coupling,” IEEE Trans.
Aerosp. Electron. Syst., vol. 45, no. 1, pp. 280–288, Jan
2009.

[9] Xu X., Ye Z., and Zhang Y., “Doa estimation for mixed
signals in the presence of mutual coupling,” IEEE Tran-
s. Signal Process., vol. 57, no. 9, pp. 3523–3532, Sept
2009.

[10] J. Dai and Z. Ye, “Spatial smoothing for direction of
arrival estimation of coherent signals in the presence of
unknown mutual coupling,” IET Signal Proc., vol. 5, no.
4, pp. 418–425, July 2011.

[11] J. Dai, W. Xu, and D. Zhao, “Real-valued doa estima-
tion for uniform linear array with unknown mutual cou-
pling,” Signal Process., vol. 92, no. 9, pp. 2056–2065,
2012.

[12] C. Qi, Y. Wang, Y. Zhang, and H. Chen, “Doa estima-
tion and self-calibration algorithm for uniform circular

array,” Electron. Lett, vol. 41, no. 20, pp. 1092–1094,
Sept 2005.

[13] M. Lin and L. Yang, “Blind calibration and doa esti-
mation with uniform circular arrays in the presence of
mutual coupling,” IEEE Antennas Wirel. Propag. Lett.,
vol. 5, no. 1, pp. 315–318, Dec 2006.

[14] D. Gao, B. Wang, and Y. Guo, “Comments on ”blind
calibration and doa estimation with uniform circular ar-
rays in the presence of mutual coupling”,” IEEE Anten-
nas Wirel. Propag. Lett., vol. 5, no. 1, pp. 566–568, Dec
2006.

[15] Z. Liu, Z. Hang, F. Wang, and Y. Zhou, “Doa estima-
tion with uniform linear arrays in the presence of mutual
coupling via blind calibration,” Signal Process., vol. 89,
no. 7, pp. 1446–1456, 2009.

[16] J. Dai, X. Bao, N. Hu, C. Chang, and W. Xu, “A re-
cursive rare algorithm for doa estimation with unknown
mutual coupling,” IEEE Antennas Wirel. Propag. Lett.,
vol. 13, pp. 1593–1596, 2014.

[17] J. Dai, D. Zhao, and X. Ji, “A sparse representation
method for doa estimation with unknown mutual cou-
pling,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp.
1210–1213, 2012.

[18] L. Wan, G. Han, L. Shu, and N. Feng, “The critical
patients localization algorithm using sparse representa-
tion for mixed signals in emergency healthcare system,”
IEEE Systems Journal, early access, 2015.

[19] Z. Liu and Y. Zhou, “A unified framework and sparse
bayesian perspective for direction-of-arrival estimation
in the presence of array imperfections,” IEEE Trans.
Signal Process., vol. 61, no. 15, pp. 3786–3798, Aug
2013.

[20] Z. Wu, D. Zhao, X. Xu, and J. Dai, “A sparse repre-
sentation method for doa estimation of coherent signals
with mutual coupling,” July 2013, pp. 3771–3775.

[21] S. Ling and T. Strohmer, “Self-calibration and bi-
convex compressive sensing,” arXiv preprint arX-
iv:1501.06864v3.

3090


