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ABSTRACT

The maximum likelihood (ML) and maximum a posteriori (MAP)
estimation techniques are widely used to address the direction-of-
arrival (DOA) estimation problems, an important topic in sensor ar-
ray processing. Conventionally the ML estimators in the DOA es-
timation context assume the sensor noise to follow a Gaussian dis-
tribution. In real-life application, however, this assumption is some-
times not valid, and it is often more accurate to model the noise as
a non-Gaussian process. In this paper we derive an iterative ML as
well as an iterative MAP estimation algorithm for the DOA estima-
tion problem under the spherically invariant random process noise
assumption, one of the most popular non-Gaussian models, espe-
cially in the radar context. Numerical simulation results are pro-
vided to assess our proposed algorithms and to show their advantage
in terms of performance over the conventional ML algorithm.

Index Terms— Direction-of-arrival estimation, spherically in-
variant random process, maximum likelihood estimation, maximum
a posteriori estimation, sensor array processing

1. INTRODUCTION

The direction-of-arrival (DOA) estimation problem is an important
topic in sensor array processing which has found wide application
in, among others, radar, sonar, radio astronomy and wireless com-
munications [1–4]. Among the numerous techniques developed for
the DOA estimation, those based on the maximum likelihood (ML)
criterion are known to have the advantage of offering an outstanding
tradeoff between the asymptotic and threshold performances [3, 5].
Conventionally, a crucial assumption for the ML estimators is that
the noise is uniformly white [3, 5]. Nevertheless, this oversimplify-
ing assumption is unrealistic in certain applications [6–8]. Thus, the
authors of [4] and [9, 10] have devised, resorting to the concept of
stepwise numerical concentration, an iterative ML estimator for the
case of nonuniform white and colored noise, respectively.

The problem, however, is that the Gaussian noise assumption it-
self, colored or not, is based on the central limit theorem, and loses
immediately its validity in certain scenarios when the conditions for
this are not fulfilled. This is the case, e.g., in the context of low-
grazing-angle and/or high-resolution radar [11–13], where the radar
clutter shows non-stationarity. Various non-Gaussian noise models
have been developed to deal with such problems, among which the
so-called spherically invariant random process (SIRP) model has be-
come the most notable and popular one [12, 14–16]. A SIRP is a
two-scale, compound Gaussian process, formulated as the product
of two components: the square root of a positive scalar random pro-
cess, namely, the texture, accounting for the local power changing,
and a complex Gaussian process, namely, the speckle, describing the

local scattering. A SIRP is fully characterized by its texture param-
eter(s) and speckle covariance matrix.

The existing works addressing the estimation problems in a
SIRP context almost exclusively assume the presence of secondary
data (known noise-only realizations) in order to estimate the speckle
and texture’s parameters [15, 17–22], instead of unknown noise
realizations embedded in and contaminating the received signal.
In [18], the authors provided a parameter-expanded expectation-
maximization (PX-EM) algorithm to estimate the unknown signal
parameters under the SIRP noise. The problem they consider, how-
ever, is a linear one. Furthermore, the application of their algorithm
is restricted to a special model, namely, the so-called generalized
multivariate analysis of variance model [23]. To the best of our
knowledge, there are no algorithms available in the current literature
for DOA estimation (a highly non-linear problem), nor for signal
parameter estimation in general in a comprehensive manner, under
the SIRP noise. To fill this gap, and employing a similar methodol-
ogy as in [4] and [9], we devise in this paper an iterative maximum
likelihood estimation (IMLE) algorithm, together with an iterative
maximum a posteriori estimation (IMAPE) algorithm in this con-
text. The latter exploits information of the noise distribution and
can be seen as a generalization of the former. Finally, we carry out
simulation to illustrate the performances of our algorithms.

2. MODEL SETUP

Consider an arbitrary sensor array comprising N sensors that re-
ceive M (M < N ) narrowband far-field source signals with un-
known DOAs θ1, . . . , θM . The array output at the tth snapshot can
be formulated as [3, 5]:

x(t) =A (θ)s(t) +n(t), t = 1, . . . , T, (1)

in which θ = [θ1, . . . , θM ]T is the M × 1 vector of unknown signal
DOAs, A (θ) = [a (θ1) , . . . ,a (θM)] denotes the N ×M steering
matrix, s(t) is the M × 1 vector of the source waveforms, n(t) is
the N × 1 sensor noise vector, T denotes the snapshot number, and
(⋅)T denotes transpose.

In this paper, we assume the source waveforms s(t), t =
1, . . . , T , to be unknown deterministic complex sequences [3]. The
sensor noise is modeled as a SIRP, which comprises two terms,
statistically independent of each other [14]:

n(t) =
√
τ(t)σ(t), t = 1, . . . , T ; (2)

in which σ(t) represents the speckle, a temporally white, complex
Gaussian process with zero mean and an unknown N × N covari-
ance matrixQ = E{σ(t)σH(t)}, where (⋅)H stands for the conju-
gate transpose; whereas the texture, denoted by τ(t), is composed
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of independent, identically distributed (i.i.d.) positive random vari-
ables at each snapshot. To resolve the ambiguity between the texture
and the speckle so as to make the noise parameters uniquely identi-
fiable, we assume that tr{Q} = N , in which tr{⋅} denotes the trace.
In this paper, we mainly consider two kinds of texture distributions
that are most widely used in the literature, for both of which τ(t)
is characterized by two parameters, the shape parameter a and the
scale parameter b. The first is the gamma distribution, leading to the
K-distributed noise [12, 24], where the pdf of τ(t) is:

p(τ(t);a, b) = 1

Γ(a)ba τ(t)
a−1e−

τ(t)
b , (3)

in which Γ(⋅) denotes the gamma function. The second kind of
our considered texture distribution is the inverse gamma distribu-
tion, leading to the t-distributed noise [25, 26], for which

p(τ(t);a, b) = ba

Γ(a)τ(t)
−a−1e−

b
τ(t) . (4)

Under the assumptions above, the unknown parameter vector of
our problem is ξ = [θT ,χT ,ζT , a, b]T , where χ is a 2NT -element
vector containing the real and imaginary parts of the elements of
s(t), t = 1, . . . , T , and ζ is a N2-element vector containing the real
and imaginary parts of the entries of the lower triangular part ofQ.

Let x = [xT (1), ...,xT (T )]T denote the full observation vec-
tor, and τ = [τ(1), . . . , τ(T )]T represent the vector of texture real-
izations at all snapshots. The full observation likelihood conditioned
on τ can be written as:

p (x∣τ ;θ,χ,ζ) =
T

∏
t=1

exp (− 1
τ(t)ρ

H(t)ρ(t))
∣ πτ(t)Q ∣ ; (5)

in which ρ(t) = Q−1/2 (x(t) −A (θ)s(t)), represents the noise
realization at snapshot t with its speckle spatially whitened.

Eq. (5), multiplied by p(τ ;a, b), leads to the joint likelihood of
x and τ :

p (x,τ ;ξ) = p (x∣τ ;θ,χ,ζ)p(τ ;a, b)

=
T

∏
t=1

exp (− 1
τ(t)ρ

H(t)ρ(t))
∣ πτ(t)Q ∣ p(τ(t);a, b).

(6)

3. ITERATIVE MAXIMUM LIKELIHOOD ESTIMATION

In our IMLE algorithm we maximize, similarly as in [27], the condi-
tional likelihood in Eq. (5), instead of the intractable marginal like-
lihood function, ∫

+∞
0 p (x,τ ;ξ) dτ , which does not yield a closed-

form expression. In doing so, we actually focus on the texture real-
ization τ , which is considered as deterministic, rather than the tex-
ture process itself.

Let LC denote the conditional log-likelihood (LL) function,
which arises from Eq. (5), as:

LC = lnp (x∣τ ;θ,χ,ζ) = −TN lnπ − T ln ∣Q∣

−N
T

∑
t=1

ln τ(t) −
T

∑
t=1

1

τ(t)ρ
H(t)ρ(t).

(7)

To begin with, we set ∂LC/∂τ(t) = 0, the solution of which
provides an estimate of the parameter τ(t) when the parameters θ,

s(t) and Q are fixed. We denote this estimate by τ̂(t), which has
the following expression:

τ̂(t) = 1

N
(x(t) −A (θ)s(t))HQ−1 (x(t) −A (θ)s(t)) . (8)

Meanwhile, by applying Lemma 3.2.2. in [28] to Eq. (7), one can
obtain the expression of Q̂, representing the estimate of Q when θ,
s(t) and τ(t) and are fixed, as:

Q̂ = 1

T

T

∑
t=1

1

τ(t) (x(t) −A (θ)s(t)) (x(t) −A (θ)s(t))H , (9)

in which replacing τ(t) by the expression of τ̂(t) in Eq. (8) leads to
the following iterative expression of Q̂:

Q̂
(i+1) = N

T

T

∑
t=1

(x(t) −A (θ)s(t)) (x(t) −A (θ)s(t))H

(x(t) −A (θ)s(t))H (Q̂(i))
−1

(x(t) −A (θ)s(t))
,

(10)
for which we choose the identity matrix of size N , denoted by IN ,

to serve as the initialization matrix Q̂
(0)

.
We further need to normalize Q̂

(i+1)
in Eq. (10) to fulfill the

assumption that tr{Q} = N . Let Q̂
(i+1)
n denote the normalized esti-

mate Q̂
(i+1)

, which is:

Q̂
(i+1)
n = N Q̂

(i+1)/tr{Q̂(i+1)} . (11)

Now we consider the estimate of s(t) when θ, τ(t) and
Q are fixed, which, denoted by ŝ(t), can be found by solving
∂LC/∂s(t) = 0, as:

ŝ(t) = (ÃH (θ) Ã (θ))
−1
Ã
H (θ) x̃(t), (12)

in which Ã (θ) =Q−1/2A (θ), x̃(t) =Q−1/2x(t), representing the
steering matrix and the observation at snapshot t, both pre-whitened
by the speckle covariance matrixQ, respectively.

From Eqs. (8), (10) and (12) one can see that the estimates of
τ(t),Q and s(t) are mutually dependent, and further dependent on
the parameter vector θ. This dependency makes it impossible to ob-
tain a closed-form expression for the LL function concentrated w.r.t.
each of the individual parameters τ(t), Q and s(t) and indepen-
dent of other unknown parameters. To cope with this difficulty, we
appeal to the so-called stepwise numerical concentration method in-
troduced in [4, 9], and concentrate the LL function iteratively. This
can be accomplished by assuming at a particular iteration that, in
our case, Q̂ and τ̂(t) are known and can be used in the computation
of ŝ(t), which is then used in its turn to update Q̂ and τ̂(t) in the
next iteration. The sequential updating procedure is repeated until
convergence.

Finally, we address the estimation of θ, our parameter of inter-
est, considering the values of Q and τ as fixed and known. Thus,
neglecting the constant terms, the conditional LL function in Eq. (7)
can be reformulated as:

LC = −
T

∑
t=1

1

τ(t)ρ
H(t)ρ(t), (13)

into which we insert Eq. (12). The resulting expression is then maxi-
mized w.r.t. θ, to obtain the estimate of θ for each iteration, denoted
by θ̂, as:

θ̂ = arg min
θ

{
T

∑
t=1

1

τ(t) ∥P �
Ã(θ)(t)x̃(t)∥

2
} , (14)
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in which ∥⋅∥ denotes the Euclidean norm and P �
Ã(θ)(t) = IN −

Ã(θ) (ÃH(θ)Ã(θ))
−1
Ã
H(θ), stands for the orthogonal projec-

tion matrix onto the null space of the matrix Ã(θ).
Our proposed IMLE algorithm, comprising three steps, can be

summarized as follows:
Step 1: Initialization. At iteration i = 0, set τ̂ (0)(t) = 1, t =
1, . . . , T , and Q̂

(0)
n = IN .

Step 2: Calculate θ̂
(i)

from Eq. (14) using τ̂ (i)(t) and Q̂
(i)
n , then

ŝ(i)(t) from Eq. (12) using θ̂
(i)

, τ̂ (i)(t) and Q̂
(i)
n .

Step 3: Use θ̂
(i)

, ŝ(i)(t) and Q̂
(i)
n to update Q̂

(i+1)
n from Eqs. (10)

and (11). Then use θ̂
(i)

, ŝ(i)(t) and the updated matrix Q̂
(i+1)
n to

find the update τ̂ (i+1)(t) from Eq. (8). Set i = i + 1.
Repeat Step 2 and Step 3 until a stop criterion (convergence or

a maximum number of iteration) to obtain the final estimate of θ,
denoted by θ̂IMLE.

The convergence of our algorithm is guaranteed by the fact that
the value of the objective function in Eq. (14) at each step can either
improve or maintain but cannot worsen [9]. The same holds true for
the update of Q̂ and τ̂(t). In fact, as our simulations will show, the
convergence can be attained by only two iterations. Thus, the com-
putational cost of our algorithm, which lies mainly in the solution of
the highly nonlinear optimization problem in Step 2, is only a few
times of that of the conventional ML estimation (CMLE) algorithm,
which, incidentally, corresponds to the case in which the noise is
uniform white Gaussian, such that Eq. (14) degenerates into:

θ̂CMLE = arg min
θ

{
T

∑
t=1

∥P �
A(θ)x(t)∥

2} . (15)

4. ITERATIVE MAXIMUM A POSTERIORI ESTIMATION

The IMLE algorithm, presented in Section 3, treats the texture as de-
terministic and thereby ignores information of its statistical proper-
ties. This has the advantage of easier and faster implementation, and
is also a natural approach when the texture distribution is either un-
known or does not have a closed-form expression, e.g., in the case of
Weibull-distributed noise. In general cases, however, such approach
is suboptimal. Thus, when the texture distribution is available, we
have the better choice of exploiting information from the texture’s
prior distribution, i.e., employing the maximum a posteriori (MAP)
approach, in designing our estimation procedure. This leads to our
IMAPE algorithm that we propose in this section.

The MAP estimator maximizes the joint LL function, denoted
by LJ, which is equal to:

LJ = lnp (x,τ ;ξ) = ln (p (x∣τ ;θ,χ,ζ)p(τ ;a, b))

= LC +
T

∑
t=1

lnp(τ(t);a, b)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LC − T ln Γ(a) − Ta ln b + (a − 1)
T

∑
t=1

ln τ(t)

− ∑
T
t=1 τ(t)
b

, K-distributed noise,

LC − T ln Γ(a) + Ta ln b − (a + 1)
T

∑
t=1

ln τ(t)

− b
T

∑
t=1

1

τ(t) , t-distributed noise.

(16)

Solving ∂LJ/∂τ(t) = 0 leads to the expression of τ̂(t) when all
the remaining unknown parameters are fixed, which is:

τ̂(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
((a −N − 1) b + ( (a −N − 1)2 b2

+ 4b (x(t) −A (θ)s(t))HQ−1

⋅ (x(t) −A (θ)s(t)) )
1
2 ), K-distributed noise,

1

a +N + 1
( (x(t) −A (θ)s(t))HQ−1

⋅ (x(t) −A (θ)s(t)) + b), t-distributed noise.

(17)

Next we consider the estimation of the texture parameters a
and b, denoted by â and b̂. The latter can be obtained by solving
∂LJ/∂b = 0, as:

b̂ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑Tt=1 τ(t)
Ta

, K-distributed noise,

Ta

∑Tt=1 1
τ(t)

, t-distributed noise.
(18)

Meanwhile, calculation of ∂LJ/∂a results in:

∂LJ

∂a
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− TΨ(a) − T ln b +
T

∑
t=1

ln τ(t), K-distributed noise,

− TΨ(a) + T ln b −
T

∑
t=1

ln τ(t), t-distributed noise;

(19)
in which Ψ(⋅) stands for the digamma function. It is obvious from
Eq. (19) that ∂LJ/∂a = 0 does not allow an analytical expression of
the root. Thus â can only be calculated numerically.

Next, we approach the estimation of the source waveforms
and the speckle covariance matrix. By noticing that ∂LJ/∂Q =
∂LC/∂Q, and ∂LJ/∂s(t) = ∂LC/∂s(t), it follows immediately
that the same expressions of Q̂ and ŝ(t) in Eqs. (9) and (12), which
we obtained for the IMLE algorithm, are also valid in the case of the
IMAPE algorithm. Substituting into Eq. (9) the new expression of
τ̂(t) in Eq. (17) leads to the following expression for Q̂:

Q̂
(i+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

T

T

∑
t=1

(x(t) −A (θ)s(t))

⋅ (x(t) −A (θ)s(t))H

/
⎛
⎝

(4b (x(t) −A (θ)s(t))H (Q̂(i))
−1

⋅ (x(t) −A (θ)s(t)) + (a −N − 1)2 b2)
1
2

+ (a −N − 1) b
⎞
⎠
, K-distributed noise,

a +N + 1

T

T

∑
t=1

( (x(t) −A (θ)s(t))

⋅ (x(t) −A (θ)s(t))H )

/( b + (x(t) −A (θ)s(t))H (Q̂(i))
−1

⋅ (x(t) −A (θ)s(t))), t-distributed noise.

(20)
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which, similar to the expression of Q̂
(i+1)

in Eq. (10) for the IMLE
algorithm, needs to be substituted into Eq. (11) to obtain the normal-

ized Q̂
(i+1)

denoted as Q̂
(i+1)
n .

Finally, we address the estimation of θ. Adopting the numerical
concentration method similar to that in Section 3, we also assume
here thatQ and τ are known from the previous iteration of the algo-
rithm. Furthermore, as the estimates of a and b are only dependent
on τ , these are also fixed for each iteration. This allows us to drop
those terms in the expression of the joint LL function LJ in Eq. (16)
that contain only these unknown parameters, and thereby to trans-
form it into the same expression as in Eq. (13). This means that θ
can be obtained, also for the IMAPE algorithm, from Eq. (14).

The iterative estimation procedure of our IMAPE algorithm also
contains three steps, and is summarized as follows:
Step 1: Initialization. At iteration i = 0, set τ̂ (0)(t), t = 1, . . . , T as
the absolute values of independent random numbers from the stan-

dard normal distribution1, and Q̂
(0)
n = IN .

Step 2: Calculate θ̂
(i)

from Eq. (14) using τ̂ (i)(t) and Q̂
(i)
n , then

ŝ(i)(t) from Eq. (12) using θ̂
(i)

, τ̂ (i)(t) and Q̂
(i)
n . Meanwhile,

substitute Eq. (18) into Eq. (19). First find numerically â(i) from
Eq. (19) using τ̂ (i)(t), then b̂(i) from Eq. (18) using τ̂ (i)(t) and
â(i).
Step 3: Use θ̂

(i)
, ŝ(i)(t), Q̂

(i)
n , â(i) and b̂(i) to update Q̂

(i+1)
n from

Eqs. (20) and (11). Then use θ̂
(i)

, ŝ(i)(t), â(i), b̂(i) and the updated

matrix Q̂
(i+1)
n to find the update τ̂ (i+1)(t) from Eq. (17). Set i =

i + 1.
Repeat Step 2 and Step 3 until a stop criterion (convergence or

a maximum number of iteration) to obtain the final θ̂, denoted by
θ̂IMAPE.

The remarks at the end of Section 3, upon the convergence and
computational cost of our IMLE algorithm, also directly apply to our
IMAPE algorithm.

5. NUMERICAL SIMULATIONS

In our simulations we consider a uniform linear array comprising
N = 6 omnidirectional sensors with half-wavelength inter-sensor
spacing. Two equally powered narrowband sources impinge on the
array with the DOAs θ1 = 30○ and θ2 = 60○ relative to the broadside.
The number of statistically independent snapshots is T = 10. For
K-distributed sensor noise we choose a = 1.6 and b = 2; and for
t-distributed sensor noise, a = 1.1 and b = 2. The entries of the
speckle covariance matrix Q are generated by [29] [Q]m,n = σ2 ⋅
0.9∣m−n∣ej

π
2
(m−n), m,n = 1, . . . ,N . The number of Monte-Carlo

trials is 100. The signal-to-noise ratio (SNR) is defined as:

SNR = ∑Tt=1 ∥s(t)∥2

TE{τ(t)}tr{Q} , (21)

in which E{τ(t)} is equal to ab for a K-distributed noise and b/(a−
1) for a t-distributed noise (for a > 1) [30].

In Figs. 1 and 2, we plot the mean square errors (MSEs) of the
estimation of θ under the SIRP noise versus the SNR by implement-
ing our proposed IMLE and IMAPE algorithms, respectively. In
Fig. 1 the noise is t-distributed, and in Fig. 2, K-distributed. For

1Unlike the case of the IMLE algorithm, for the IMAPE algorithm, which
involves estimation of the texture parameters, initializing the texture compo-
nents as all ones will lead to poor performance. We thus initialize here the
texture as random numbers instead.

comparison we also plot, in both figures, the MSEs generated by
the CMLE algorithm in Eq. (15), and the deterministic Cramér-Rao
bound (CRB) [13]. From these figures one can clearly see that the
conventional ML algorithm becomes poor under the SIRP noise, and
both of our algorithms lead to significantly superior performance.
These figures also show that only two iterations are sufficient for
both of our algorithms to have a satisfactory performance, in terms
of a resulting MSE appropriately close to CRB(θ), in asymptotic
SNR cases.
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Fig. 1: MSE vs. SNR under t-distributed noise.
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Fig. 2: MSE vs. SNR under K-distributed noise.

6. CONCLUSION

In this paper we addressed the problem of estimating the DOAs of
multiple sources under the SIRP noise, by deriving two new esti-
mators belonging respectively to the ML and the MAP family. Our
proposed IMLE and IMAPE algorithms are both based on the step-
wise concentration of the LL function w.r.t. signal and noise param-
eters. As our simulations show, both algorithms require only a few
iterations to attain convergence, and lead to significantly superior
performance than the conventional approach.
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