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ABSTRACT
This paper presents a novel approach of direction-of-arrival
(DoA) estimation for the electronically steerable parasitic ar-
ray radiator (ESPAR) antennas, using only a single radio-
frequency (RF) chain. Starting from the problem formulation
in the Bayesian compressive sensing (BCS) framework, the
CS measurements are projected onto the beamspace of the
unique configuration of the ESPAR antenna. In this work,
measurements collected at multiple snapshots are considered.
First, we propose to solve the sparse recovery problem by the
multi-task BCS [1]. Then, the DoAs are estimated by em-
ploying a noise filter on the recovered sparse signal. In this
method, the number of sources need not be known a priori,
and computation complexity is reduced by avoiding comput-
ing the correlation matrix of measurements unlike the tradi-
tional DoA estimation techniques. Simulations show that the
proposed method can recover closely spaced sources using a
small number of noisy snapshots, and it performs better with
more sources than other state-of-the-art algorithms.

Index Terms— ESPAR antenna, DoA estimation, Array
signal processing, Bayesian compressive sensing

1. INTRODUCTION

Recently, there has been increasing interests in DoA estima-
tion with the ESPAR antennas [2]. The ESPAR antenna, a
kind of smart antenna, uses only a single RF chain to trans-
mit/receive data, thereby reducing hardware complexity, cost
and power consumption. Thus, it is well suited for various
applications including small radio terminals. In the ESPAR
array, directional beamforming is achievable by tuning reac-
tance values loaded to the parasitic elements, which are mu-
tually coupled with the sole active element.

However, the use of a single RF chain in the ESPAR an-
tennas may pose some difficulties in applying the DoA es-
timation algorithms, derived with the traditional antenna ar-
rays. In the ESPAR array, only the single-port output is at-
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tainable, while signals impinging on the parasitic elements
cannot be observed. However, currents induced on the par-
asitic elements are mutually coupled with that on the active
element. Moreover, there is a non-linear relationship between
the single-port output and reactance loads. To solve these
problems, signal processing in the ESPAR array is generally
performed in reactance domain (beamspace) instead of ele-
ment domain. In [3], authors developed a reactance-domain
(RD) multiple signal classification (MUSIC) algorithm for the
ESPAR antenna, to provide a high resolution method. Taille-
fer et al. [4] demonstrated that it is suited to exploit the invari-
ances of the regular structure of a hexagonal ESPAR array;
therefore, the ESPRIT algorithm was modified in the reac-
tance domain. Indeed, the subspace algorithms require the
evaluation of the covariance matrix estimated from the mea-
surements and assume a large number of snapshots for data
measurements. This implies an unavoidable increase of the
receiver complexity and a delay in the DoA estimation. Since
the signals impinging on an antenna array is sparse in the spa-
tial domain, it is possible to employ the emerging compressive
sensing theory [5] for DoA estimation. A DoA estimation
approach based on CS has been studied for ESPAR anten-
nas in [6], where the DoA estimation problem was cast to an
multiple measurement vector (MMV) problem, and then the
l1-SVD (singular value decomposition) algorithm [7] was ex-
ploited as the numerical solution. The main drawback of this
approach as well as the RD subspace algorithms is that it re-
quire a prior knowledge of the number of sources, that is not
usually achievable in practice.

Alternatively, the Bayesian compressive sensing (BCS)
[8] has been proposed, where the original deterministic CS
problem is reformulated in its probabilistic counterpart and
then efficiently solved with the relevance vector machine
(RVM). In [9], the BCS has been studied for the DoA esti-
mation with a traditional uniform linear array. A novel DoA
estimation method based on BCS is studied for the ESPAR
antenna for the first time. This method avoids the computa-
tion of the correlation matrix of the measurements by directly
linking the measurements to the parameters being estimated.
Therefore, the computational complexity is reduced. More-
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over, the BCS-based method does not require the knowledge
of the number of source signals, and thus it is more practical
compared to the l1-SVD and the RD-MUSIC algorithms.

The rest of the paper is organized as follows. The ES-
PAR antenna and the problem formulation are given in Sec-
tion 2. The proposed DoA estimation approach is presented
in Section 3. The simulations are given in Section 4. Finally,
Section 5 concludes this paper.

2. PROBLEM FORMULATION

2.1. ESPAR Antenna

Consider an ESPAR antenna with M + 1 elements, whose
structure example can be found in [2]. One active element
(#0) is located in the center of a circle with radius d, where d
is usually set to smaller than a half of wavelength for strong
mutual coupling between elements. M parasitic elements sit
at the equal angular separations on the circle, i.e., the m-th
parasitic element is located at angle φm = (m − 1) 2π

M ,m ∈
{1, · · · ,M}. The active element is connected to the single RF
chain and fed to a low noise amplifier (LNA) with a loading
impedanceZs. It is noted that, throughout this work, the load-
ing impedanceZs is assumed to be perfectly matched with the
input impedance (Zin) seen by the active element, that leads
to 100% radiation efficiency of the antenna system. Parasitic
elements are connected to variable reactors (varactors), which
control the reactance loads of parasitic elements, denoted by
a vector x = [x1, · · · , xM ]T . (·)T defines transpose operator.

In this work, we focus analysis on the 2-dimensional DoA
estimation, i.e., only the azimuth angle θ is considered. As-
sume that, at an instant sensing period, the k-th set of reac-
tance loads xk is used. The corresponding k-th beampattern
voltage response of the ESPAR antenna is represented as [10]:

Bk(θ) = wT
k a(θ), (1)

where a(θ) = [1, e−jd
2π
λ cos(θ−φ1), · · · , e−jd 2π

λ cos(θ−φM )]T

is the steering vector determined from the antenna geometry,
where λ is the carrier wavelength. In (1), wk ∈ C(M+1)×1

is an equivalent weight vector defining the k-th beampattern,
given by

wk = (Z + Xk)−1u0, (2)

where entries of the matrix Z ∈ C(M+1)×(M+1) represent
the mutual impedance between antenna elements, and u0 =
[1, 0, · · · , 0]T is a selection vector with (M + 1) dimensions.
The matrix Xk is an (M + 1) × (M + 1) diagonal loading
matrix used to form the k-th beampattern, i.e.,

Xk = diag
([
Zs jxTk

])
, (3)

where j is the complex unit.

2.2. DoA Estimation Problem

Let us consider L signals sl(t) from unknown directions
θl, l ∈ {1, · · · , L} impinging on the ESPAR array. The in-
cident signals are assumed to be narrowband, far-field and
characterized by the same frequency content. The voltage re-
sponses of all elements for an impinging signal are combined
due to strong mutual coupling and collected from the single-
port. At time t, when the k-th beampattern is formed, the
single-port output of the ESPAR array is a linear combination
of L signals, which is written as

yk(t) =

L∑
l=1

wT
k a(θl)sl(t) + ek(t),

= wT
k A(θ)s(t) + ek(t),

(4)

where A(θ) = [a(θ1), · · · ,a(θL)] is the matrix of steering
vectors corresponding to unknown directions θ = [θ1, · · · , θL],
s(t) = [s1(t), · · · , sL(t)]T is the signal vector, and ek(t) is
measurement noise represented as zero-mean Gaussian dis-
tributions with variance σ2. According to (4), the DoA
estimation problem is to find the unknown directions θl,∀l
and the number of sources L, given the knowledge of yk(t)
and the mapping θ → A(θ). It is worth emphasizing that
this problem is non-linear, since the targeting parameters θ
are present in the exponential terms of the elements of A(θ).

To apply the CS theory, the DoA estimation problem has
to be reformulated as a sparse signal representation problem.
The whole azimuth plane is discretized as a sampling grid, de-
noted as θ̃ = [θ̃1, · · · , θ̃Nθ ], where Nθ � L. It is noted that,
in this work, the true signal directions θl,∀l are assumed to
belong to the fine sampling grid θ̃. In other words, we do not
consider the case where the true signal directions are off-grid,
that may be solved in the future work. An overcomplete dic-
tionary is constructed as A(θ̃) = [a(θ̃1), · · · ,a(θ̃Nθ )]. The
use of the overcomplete dictionary A(θ̃) allows one to trans-
form the problem of parameter estimation of θ to the problem
of sparse spectrum estimation of s̃(t) (i.e., only a few entries
of s̃ are non-zero for θ̃n = θl). Equation (4) is rewritten as

yk(t) = wT
k A(θ̃)s̃(t) + ek(t). (5)

The sparse representation problem in (5) is linear, since A(θ̃)
is known and does not depend on the actual source directions
θ. In the framework of CS, wT

k can be considered as a projec-
tion vector, which corresponds to one CS measurement, and
K(K < Nθ) such measurements constitute the overall CS
measurement vector y = [y1(t), · · · , yK(t)]T ∈ CK×1. It is
noted that the ESPAR antenna sequentially formsK beampat-
terns, and thus K sensing periods are required to achieve one
measurement vector. For notation simplicity, here we drop off
the time index, so that it can be considered as a “single snap-
shot” measurement as that in a conventional antenna array.
Moreover, the signal vector s̃(t) is not required to be the same
during the block of K sensing periods, which is assumed in
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the reactance domain MUSIC and ESPRIT algorithms. In-
stead, we just assume that the positions of the non-zero ele-
ments of s̃(t) are kept the same through this duration.

In practice, one may perform multiple sets of CS mea-
surements (i.e., multi-snapshot model), expressed as

yi = WA(θ̃)s̃i + ei, i = 1, · · · , T (6)

where W = [w1, · · · ,wK ]T is the projection matrix deter-
mined by K sets of reactance loads, and ei = [e1, · · · , eK ]Ti
is the noise vector. T is the number of snapshots. In this
model, the directions of signals θ are assumed to be time in-
variant through out the T “snapshots”.

3. BAYESIAN COMPRESSIVE SENSING APPROACH

Due to the linearity of the sparse signal representation prob-
lem, we can consider the real-valued expression of (6) 1

ŷi = ŴÂ(θ̃)ŝi + êi, i = 1, · · · , T̂ , (7)

which is suitable for the BCS algorithm. Although vectors
and matrices in (7) have double dimensions compared to those
in (6), the sparsity of the problem is not destroyed. Generally,
the T measurements, {ŷi}Ti=1 are statistically correlated. The
multi-task (MT) CS algorithm [1] is developed for simulta-
neous inversion of the multiple related signals, based on a
hierarchical Bayesian model. In this model, given a common
prior shared among multiple snapshots, individual tasks (i.e.,
inverse CS mapping ŷi → ŝi) are performed independently.

Let α̂ = {α̂n}N̂θn=1 be hyperparameters, shared among all
T snapshots and controlling the sparseness of the signal vec-
tors ŝi. To enforce sparsity over the parameters ŝi, Gamma
priors are assumed on the hyperparameters α̂ and noise pre-
cision β = σ−2. A zero-mean Gaussian prior is defined for
each component of ŝi. By integrating out the noise precision,
the likelihood function of ŝi is expressed as [1]

Pr(ŝi|[ŷi, α̂])

=
Γ(a+ N̂θ/2)

[
1 + 1

2b (ŝi − µ̂i)
T Σ̂

−1

i (ŝi − µ̂i)
]−(a+N̂θ/2)

Γ(a)(2πb)N̂θ/2|Σ̂i|1/2
(8)

where
µ̂i = Σ̂i(ŴÂ(θ̃))T ŷi, (9)

Σ̂i =
(

(ŴÂ(θ̃))T (ŴÂ(θ̃)) + diag(α̂)
)−1

. (10)

In (8), a, b are parameters determining the Gamma distribu-
tion of the noise precision β. This is a multivariate Student-t
distribution.

1x̂ = [R{x}, I{x}]T ∈ R2N×1 is the real-valued vector of a complex

vector x ∈ CN×1, and X̂ =

[
R{X} −I{X}
I{X} R{X}

]
∈ R2N×2M is the real-

valued matrix of a complex matrix X ∈ CN×M , whereR{·} and I{·} are
the real and imaginary parts of a complex number, respectively.

The most probable hyperparameters α̂MP are estimated
by maximizing logarithm of the marginal likelihood: [9]

L(α) =

T∑
i=1

logPr(ŷi|α̂)

=− 1

2

T∑
i=1

[
log(|Ĉi|) + (N̂θ + 2a) log(ŷTi Ĉiŷi + 2b)

]
+ const,

(11)
where

Ĉi = I + (ŴÂ(θ̃))T diag(α̂)−1(ŴÂ(θ̃)). (12)

The solution to αMP is obtained by iterative algorithm, such
as the fast RVM [11, 1]. With αMP , the sparse signal is re-
covered as the equation shown at the bottom of the next page.

With the recovered sMT−BCS , a noise filtering with a
threshold parameter η ∈ [0, 1] [9] is used to estimate the
DoAs. The main idea is to select a number (i.e., the esti-
mated source numbers Le) of spikes, which constitute to the η
portion of the total energy of sMT−BCS . Using the minimum
energy among the selected spikes as the energy threshold ξLe ,
the estimate DoAs are decided as the positions corresponding
to the spikes with energy higher than ξLe .

4. NUMERICAL RESULTS

This section evaluates the performance of the proposed DoA
estimation approach based on the MT-BCS for the ESPAR an-
tenna, which is compared to that of the RD-MUSIC algorithm
[3] as well as the l1-SVD algorithm [6]. It is noted that the
RD-MUSIC and l1-SVD algorithms require the prior knowl-
edge of the number of source signals.

The simulated ESPAR antenna has M + 1 = 7 elements
assumed to be thin electrical dipoles with the length of λ/2
each. The spacing between two adjacent elements is set to
d = λ/4. The mutual impedance matrix Z is determined
by the configuration of the antenna array, which can be cal-
culated by the analytical formulas given in [12]. In the ES-
PAR array, the projection matrix W determinesK directional
beampatterns. We design the K = 6 directional beampat-
terns dividing the angular space of the ESPAR antenna into
K = 6 sectors, each of which is accessed by the correspond-
ing beampattern. The set of reactance loads for the first sector
beampattern maximizing the beam gain to the look direction
0◦ is x1 = [31.2, 17.03,−37.55,−37.55, 17.03, 31.2]. The
remaining 5 beampatterns are formed by circularly permut-
ing elements of x1. Unlike a uniform linear array, the circular
ESPAR antenna array is able to detect the DoA in the full az-
imuth plane. The angular sampling grid θ̃ is set to be samples
uniform with ∆θ̃ = 1◦ (i.e., Nθ = 360).

First, consider two closely spaced source signals, where
the angular displacement is 15◦. The transmitted signals are
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Fig. 1. DoA estimation of two closely spaced signals, θ1 =
200◦, θ2 = 215◦, SNR= 10 dB, T = 100.

assumed to be binary phase-shift (BPSK) signals. The num-
ber of snapshots is set to T = 100, and the two signals are
with the same SNR value, SNR = 10 dB. An energy thresh-
old parameter η = 0.95 is assumed in the MT-BCS algorithm.
It is noted that the results from the proposed MT-BCS algo-
rithm are not plotted in their logarithm version, since the use
of the noise filtering process sets the element energies to zeros
when they are smaller than the threshold (i.e., the logarithm
value of a zero is minus infinity). From Fig. 1 we can observe
that the RD-MUSIC algorithm is unable to exactly recover
the two source signals. On the contrary, the two source sig-
nals can be exactly recovered by the l1-SVD algorithm and
MT-BCS algorithm. However, there is no knowledge of the
number of source signals in the MT-BCS algorithm. In Fig.
2, L = 4 incident signals are considered. It shows that the
MT-BCS algorithm outperforms both the RD-MUSIC and l1-
SVD algorithms in the case with four signals impinging on the
ESPAR antenna. Specifically, only the MT-BCS algorithm is
able to recover two closely placed signals, when the number
of source signals increases to 4.

5. CONCLUSIONS

In this paper, an new DoA estimation method based on the
MT-BCS is studied for the first time within the framework
of DoA estimation using ESPAR antenna. Starting from a
sparse signal representation of the DoA estimation problem
with an ESPAR antenna, the problem is cast in the framework
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Fig. 2. DoA estimation of four signals, θ1 = 30◦, θ2 = 80◦,
θ3 = 100◦,θ4 = 250◦, SNR= 10 dB, T = 100.

of multi-task Bayesian learning. The main advantage of this
method is avoiding the requirement of the knowledge of the
number of incident signal, and the computational complexity
is reduced by avoiding the computation of correlation matrix
from measurements. The simulations show superiority of the
MT-BCS approach to the RD-MUSIC as well as the l1-SVD
algorithms, in the recovery of two closely spaced signals, us-
ing a small number of snapshots.
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