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ABSTRACT

This paper addresses the issue of direction-of-arrival (DOA)
estimation with an objective to eliminate the off-grid effect of
the sparsity-based methods and enlarge the maximum num-
ber of distinguishable signals in the subspace-based methods.
We first reconstruct the covariance matrix of the array output
in the Toeplitz structure and then employ the reconstructed
covariance matrix together with root-MUSIC to estimate the
DOAs. The proposed covariance matrix reconstruction ap-
proach (CMRA) can be used for uniform and sparse linear
arrays. It can also estimate the DOAs of multiple signals that
are larger than the number of sensors by taking advantage of
the array geometry. In contrast to the sparsity-based method-
s, CMRA is formulated in the continuous angle space rather
than the discretized one, and hence it is immune to the off-grid
effect. Simulations are carried out to verify the effectiveness
of our method.

Index Terms— DOA estimation, sparse signal represen-
tation (SSR), Toeplitz structure, atomic norm

1. INTRODUCTION

The sparsity-based methods for DOA estimation [1–3] have
attracted much interest in the past decade. Compared with
the subspace-based methods and maximum likelihood (M-
L) [4], the sparsity-based methods exhibit several advantages:
robustness to noise, no requirement of source number, and im-
proved resolution. However, the disadvantages cannot be ig-
nored. These methods formulate signal representation on the
predefined discrete dictionary, i.e., the continuous angle space
is reduced to a set of discrete grids under the assumption that
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the true DOAs of the sources lie exactly on the predefined fi-
nite discrete grids. This discretization strategy may degrade
the performance of sparsity-based methods since there is of-
ten an unavoidable basis mismatch between the true DOA and
the assumed grid. To alleviate the effect of basis mismatch, an
approach is proposed in [5] based on structured matrix com-
pletion [6], where the problem is formulated into a structured
Toeplitz matrix completion. However, it is not easy to choose
a satisfying regularization parameter in this method.

In this paper, a discretization-free method for DOA esti-
mation named as covariance matrix reconstruction approach
(CMRA) is proposed for both uniform linear array (ULA)
and sparse linear array (SLA). Unlike the approach in [5], the
regularization parameter is set automatically in the proposed
CMRA. We first formulate a trace minimization problem to
estimate the covariance matrix. Then the DOAs can be esti-
mated from the reconstructed covariance matrix using root-
MUSIC method [7]. As a byproduct, the number of signals
can be easily obtained as the rank of the estimated covari-
ance matrix. We then show that the CMRA can be connect-
ed to the atomic norm [8], and our method is superior to the
sparsity-based algorithms and can deal with more signals than
the number of sensors in the SLA case.

2. CMRA WITH ULA

Suppose that K narrowband far-field signals impinge onto an
array with N (N > K) equal-spaced omnidirectional sensors
from directions of θ = {θ1, · · · , θK} simultaneously. The
array output at time t, which is corrupted by additive circular
complex Gaussian white noise, can be expressed as,

x(t) =
K∑

k=1

a(θk)sk(t) + v(t) = As(t) + v(t), (1)

where x(t) = [x1(t), · · · , xN (t)]T is the array output,
s(t) = [s1(t), · · · , sK(t)]T is the vector of source signal-
s, A = [a(θ1), · · · ,a(θK)] is the array manifold matrix,
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with a(θk) = [ej2πf0τk,1 , · · · , ej2πf0τk,N ]T being a vector of
the time-delayed versions of the kth signal received at each
sensor relative to the reference sensor, v(t) is the complex in-
dependent white Gaussian noise with zero mean. We assume
that both the source signals and the noises are uncorrelated
spatially as well as temporarily, i.e.,

E
[
s(t1)s

H(t2)
]
= diag(p)δt1,t2 , (2)

E
[
v(t1)v

H(t2)
]
= diag(σ)δt1,t2 , (3)

where p = [p1, . . . , pK ]T denotes the source power parame-
ter, σ = [σ1, . . . , σN ]T denotes the noise variance parameter
and δt1,t2 equals 1 if t1 = t2 or 0 otherwise. Based on the
signal and noise models, the covariance matrix of the array
output can be obtained as

R = T (u) + diag(σ), (4)

where T (u) = Adiag(p)AH is a Hermitian Toeplitz matrix
and u = [u1, · · · , uN ]T is the first column of T (u). More-
over, T (u) ≥ 0 and rank[T (u)] = K ≤ N − 1 can also be
concluded.1

In practical applications, the covariance matrix is estimat-
ed with L snapshots as follows,

R̂ =
1

L

L∑
l=1

x(tl)x
H(tl), (5)

which is error-contaminated due to finite snapshots. We de-
note the estimation error matrix as

E = R̂−R = R̂− T (u)− diag(σ), (6)

where E consists of signal-signal, signal-noise cross correla-
tion terms which are not 0 due to finite snapshot effect. For
large L, E can be assumed to have a small Frobenius norm s-
ince the cross correlation terms become smaller as L increas-
es [9]. When T (u) is obtained, the unknown DOAs can be
well estimated by using conventional methods such as MU-
SIC. Hence, we then propose a two-stage approach, consist-
ing of a low-rank recovery stage to estimate T (u), followed
by the root-MUSIC method to estimate the DOAs from the
recovered covariance matrix. In the first stage, based on the
low-rank matrix recovery (LRMR) theory [5], the covariance
matrix can be reconstructed by solving the following opti-
mization problem

min
u,σ≽0

rank [T (u)] s.t. ∥E∥22 ≤ β, T (u) ≥ 0, (7)

where σ ≽ 0 means that every entry of σ is nonnegative,
and β is a user-specific bound which is difficult to determine.
In fact, directly calculating β as the expectation of ∥E∥22 is
not recommended since it is likely that a particular realization

1Matrix A ≥ 0 indicates that A is positive semidefinite.

will have ∥E∥22 ≥ β [10]. In what follows, we give an alter-
native constraint which enables the true solution to fall inside
the feasible region with a high probability.

According to [11], the vectorization form of E satisfies
the asymptotic normal distribution as follows (see [11] for
more details),

vec(E) ∼ AsN(0,W ) (8)

where W = 1
LR

T ⊗R, with ⊗ being the Kronecker matrix
product. In practice, W can be approximately estimated as
Ŵ = 1

LR̂
T ⊗ R̂. From (8), it can be deduced that

Ŵ− 1
2 vec(E) ∼ AsN(0, IN2), (9)

which directly results in∥∥∥Ŵ− 1
2 vec(E)

∥∥∥2
2
∼ Asχ2(N2), (10)

where Asχ2(N2) denotes the asymptotic chi-square distribu-
tion with N2 degrees of freedom. We introduce a parameter η
so that the confidence interval [0, η] integrates to probability
of 1− p, i.e., ∥∥∥Ŵ− 1

2 vec(E)
∥∥∥2
2
≤ η (11)

with a high probability 1 − p (p is very small). Replacing
the first constraint of (7) by (11), we propose the following
rank-minimization problem for DOA estimation,

min
u,σ≽0

rank [T (u)] s.t.
∥∥∥Ŵ− 1

2 vec(E)
∥∥∥2
2
≤ η, T (u) ≥ 0.

(12)
Nonetheless, this problem is NP-hard and hence, of little prac-
tical value. To avoid the nonconvexity, we utilize convex re-
laxation to relax the pseudo rank norm to the nuclear norm or
equivalently the trace norm for a positive semidefinite matrix,
i.e., to replace rank [T (u)] by tr [T (u)], where tr [T (u)] de-
notes the trace of the matrix T (u). Consequently, the convex
relaxation form of problem (12) can be given as,

min
u,σ≽0

tr [T (u)] s.t.
∥∥∥Ŵ− 1

2 vec(E)
∥∥∥2
2
≤ η, T (u) ≥ 0.

(13)
This constrained trace minimization problem can be solved
by any optimization toolbox such as CVX or SeDuMi. Af-
ter obtaining the optimal solution u∗, the estimate of T (u)
can be given as T (u∗). As for the number of signals, recall
that rank [T (u)] = K, hence the estimate K̂ can be easily
formulated as K̂ = rank [T (u∗)]. In practical applications,
based on the eigenvalue decomposition of T (u∗), K̂ can be
determined as the number of eigenvalues that are greater than
a predefined threshold ϵ.

In the second stage, we adopt the root-MUSIC method for
the ensuing DOA estimation after obtaining T (u∗) and K̂. It
should be noted that, since T (u∗) has a Toeplitz structure,
DOA estimation can also be efficiently performed based on
the classical Vandermonde decomposition lemma for positive
semidefinite Toeplitz matrices [12]. Readers are referred to
[13] for more information.
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3. CMRA WITH SLA

In this section, we extend the CMRA method to the SLA
case, which can be regarded as a subset of a ULA. We de-
fine the sensor index set of an SLA as Ω ⊂ {1, · · · , N}
for better illustration, where |Ω| = M denotes the size of
the array. In this paper, we are mainly interested in the
minimum redundancy arrays (MRA), i.e., the spacings be-
tween each two sensors form the set {d, 2d, · · · , (N − 1)d}
where d is the minimum interval. Similar to the ULA
case, the corresponding steering vector for the kth signal
is aΩ(θk) = [ej2πf0τk,Ω1 , · · · , ej2πf0τk,ΩM ]T . We denote
ΓΩ ∈ {0, 1}M×N as a selection matrix such that the jth
row of ΓΩ contains all 0s but a single 1 at the Ωj th posi-
tion. It is clear that the steering vector of the kth signal is
aΩ(θk) = ΓΩa(θk) and the output of the SLA at time t is

xΩ(t) = AΩs(t) + vΩ(t)

= ΓΩAs(t) + ΓΩv(t),
(14)

where AΩ = [aΩ(θ1), · · · ,aΩ(θK)]. The covariance matrix
is thus formulated as

RΩ = lim
L→+∞

1

L
xΩ(tl)x

H
Ω(tl)

= ΓΩT (u)Γ
T
Ω + ΓΩdiag(σ)ΓT

Ω

, TΩ(u) + diag(σΩ),

(15)

where TΩ(u) , ΓΩT (u)Γ
T
Ω and diag(σΩ) , ΓΩdiag(σ)ΓT

Ω.
We then denote the sample covariance matrix as R̂Ω =
1
L

∑L
l=1 xΩ(tl)x

H
Ω(tl), the error matrix as EΩ = R̂Ω −RΩ

and the covariance matrix of EΩ as ŴΩ = 1
LR̂

T
Ω ⊗ R̂Ω. It

can be concluded in the same manner as the ULA case that∥∥∥Ŵ− 1
2

Ω vec(EΩ)
∥∥∥2
2
∼ Asχ2(M2). (16)

Similarly, we propose the following trace minimization prob-
lem for DOA estimation in the SLA case,

min
u,σΩ≽0

tr [T (u)] s.t.
∥∥∥Ŵ− 1

2

Ω vec(EΩ)
∥∥∥2
2
≤ η′, T (u) ≥ 0,

(17)
where η′ is defined in the same manner as η except that
the asymptotic chi-square distribution is of M2 degrees of
freedom. After obtaining the solution T (u∗), the number of
sources K̂ can be given as the rank of T (u∗) and the DOA
estimates can be also determined from T (u∗) and K̂ by uti-
lizing the root-MUSIC method. Note that, when K ≥ M , the
partial covariance matrix TΩ(u) is no longer low rank, hence
directly applying root-MUSIC to TΩ(u) for DOA estimation
is impossible. Different from root-MUSIC, our method re-
covers the complete T (u) in advance and so has a potential
to recover more signals than sensors by taking advantage of
the array geometry, e.g., the co-prime array [14]. Moreover,
our method is able to well estimate K̂ as long as K < N
while any classical model-order selection strategy like AIC
and MDL [15] can work only when K < M .

4. RELATION TO SPARSITY-BASED METHODS

In this section, we show that the proposed CMRA method
is closely related to sparsity-based methods. In particular,
CMRA can be considered as a gridless version of the co-
variance matrix sparse representation (CMSR) method in [3].
To see this, suppose that the whole angle space [−π, π)
is divided into a uniform finite grid set of directions, i.e.,
ϑ = {ϑ1, · · · , ϑN̄}, where N̄ denotes the size of the grid set.
Without loss of generality, we consider the SLA case as an
example. The ULA case can be regarded as a special case
when Ω = {1, · · · , N}. Denote the corresponding manifold
matrix by ĀΩ and the corresponding power vector by p̄,
then we have r̄Ω = vec(R̂Ω − σIΩ),2 ÃΩ = Ā∗

Ω ⊙ ĀΩ.
The constraint in CMSR may make the true solution fall out-
side the feasible region, possibly deteriorating the estimation
performance [10]. We then formulate the following sparsity-
based model for DOA estimation and name it as the modified
CMSR (mCMSR),

min
p̄≽0

∥p̄∥1 s.t.
∥∥∥Ŵ− 1

2

Ω

(
r̄Ω − ÃΩp̄

)∥∥∥2
2
≤ η′. (18)

When the sampling grids are fine enough such that the true
DOAs exactly lie on the grids, it can be easily concluded that,
∥p̄∥1 =

∑K
k=1 pk = 1

N tr[T (u)] and∥∥∥Ŵ− 1
2

Ω

(
r̄Ω − ÃΩp̄

)∥∥∥2
2

=
∥∥∥Ŵ− 1

2

Ω vec
(
R̂Ω − σIΩ − ĀΩdiag(p̄)ĀH

Ω

)∥∥∥2
2

=
∥∥∥Ŵ− 1

2

Ω vec(EΩ)
∥∥∥2
2
,

(19)

which indicates that, when N̄ → +∞, mCMSR is equiva-
lent to the proposed CMRA, or equivalently, mCMSR can be
considered as a discretized version of CMRA.

Without loss of generality, the noiseless covariance
matrix R =

∑K
k=1 pka(θk)a

H(θk) can be regarded as
a positive weighted combination of K unit-norm rank-
one matrices

{
B(θk) =

1
N a(θk)a

H(θk) : k = 1, · · · ,K
}

.
Motivated by this finding, we define a set of atoms as
A =

{
B(θ) = 1

N a(θ)aH(θ) : θ ∈ [−π
2 ,

π
2 )
}

to represent
the noiseless covariance matrix R as follows,

R = N

K∑
k=1

pkB(θk) B(θk) ∈ A. (20)

By contrast, the sparsity-based methods divide the an-
gle space and result in the discretized set of atoms AN̄ ={
B̄(ϑ) = 1

N a(ϑ)aH(ϑ) : ϑ ∈ ϑ
}

. Obviously, R cannot be
represented by the combination of B̄(ϑ) unless the true DOAs

2In the sparsity-based methods, the noise powers σm(m = 1, · · · , N)
are assumed to be equal for simplicity which is true in most scenarios and
can be approximately given by the minimum eigenvalue of R̂Ω.
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(a) 7-element ULA
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(b) 4-element SLA

Fig. 1. RMSE comparison of L1-SVD, mCMSR and CMRA
with N = 7, L = 400.
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Fig. 2. DOA and power estimates of CMRA using MRA with
N = 7, M = 4, L = 400, SNR= 10dB.

are assumed to lie on the grid. Our method completely avoid-
s this potential conflict by working directly on the contin-
uous parameter space for estimating the continuous DOAs.
The resulting dictionary is an infinite dictionary with contin-
uously many atoms and arbitrarily high correlation between
candidate atoms. Interestingly, the continuous dictionary A
is closely related to the atomic norm, which generalizes the
nuclear norm (or the trace norm) for low-rank matrix com-
pletion [8]. Further study will be carried out in the future to
exploit the relationship between CMRA and the atomic norm.

5. SIMULATION RESULTS

In this section, we first evaluate the estimation performance
of CMRA with comparison to L1-SVD [1] and mCMSR by
simulations. The sparsity-based algorithms L1-SVD and m-
CMSR divide the [−90◦, 90◦] space with interval ∆θ = 2◦

and employ the iterative grid refinement (IGR) procedure for
accuracy improvement [1]. In our simulation, parameter η
(or η′) in CMRA can be calculated using MATLAB routine
chi2inv(1 − p,N2 (or M2)), where p is set to 0.001 in
general.

First, suppose two equal-power narrowband signals im-
pinge onto a 7-element ULA or a 4-element SLA with Ω =
{1, 2, 5, 7} from [−6◦+v, 6◦+v] with v chosen randomly and
uniformly within [−1◦, 1◦]. We compare the estimation per-
formance with L = 400 and different SNRs. The statistical
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Fig. 3. Detection probabilities of CMRA, AIC, MDL and
SORTE.

results are derived from 200 independent trials and shown in
Fig.1. It can be seen that CMRA coincides with the CRLB [4]
when SNR > −5dB and enjoys the best performance of the
three both in the ULA and SLA cases, while L1-SVD and m-
CMSR lose their super-resolution ability when SNR becomes
large.

Next, we attempt to estimate the DOAs and powers of 6
signals impinged onto the aforementioned SLA from different
directions, where the powers can be estimated by solving a
least squares problem provided that the corresponding DOA
estimates are first obtained. We carry out 500 trials and show
the results in Fig. 2. Black circles denote the positions of the
true powers and corresponding DOAs. Blue dots denote the
estimated ones.

We also demonstrate the signal detection performance of
CMRA with comparison to AIC, MDL and SORTE [16] in
Fig.3. The left figure is based on the 7-element ULA while
the right one is based on the 4-element SLA. From Fig.3(a)
we can see that the detection performance of CMRA is superi-
or to other compared methods. AIC cannot achieve 100% de-
tection probability when SNR is high. Fig.3(b) indicates that
AIC and MDL can only detect at most 3 signals while CM-
RA can detect up to 6 signals, which is the maximum number
of signals the SLA can estimate. SORTE can estimate only
one signal since the maximum number of its distinguishable
signals is limited by M − 3.

6. CONCLUSIONS

The DOA estimation problem without employing discretiza-
tion has been studied in this paper. The CMRA method has
been proposed by working directly on the continuous angle
space for ULA/SLA. It has been shown that the CMRA is
closely related to sparsity-based methods as well as the atom-
ic norm. In particular, CMRA can be regarded as the grid-
less version of the sparsity-based method mCMSR. Comput-
er simulation has shown that CMRA is able to detect more
signals than sensors in the SLA case.
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