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ABSTRACT
In this paper, a noncircular deterministic maximum likeli-
hood (NC-DML) estimator for direction-of-arrival estimation
of strictly NC signals is devised. Unlike the conventional
DML solution for arbitrary signals, the NC-DML exploits the
NC properties of the sources by reconstructing the parameter
set, significantly decreasing the number of parameters to be
considered. For computing the NC-DML, we present a nov-
el NC alternating projection (NC-AP) approach. The NC-AP
solution is carried out based on an augmented virtual array
structure. Moreover, it also takes the impact of the initial
phase shift of the NC signals into account. Simulation re-
sults are included to illustrate the superiority of the proposed
method.

Index Terms— noncircular, deterministic maximum like-
lihood, direction-of-arrival, alternating projection.

1. INTRODUCTION

The problem of estimating the direction-of-arrival (DOA) of
narrow-band signals has been an extensive research topic in a
variety of areas such as radar, sonar and wireless communica-
tions. The deterministic maximum likelihood (DML) method
was one of the first to be investigated [1], nevertheless, due
to the high computational load involved, it did not become
popular. Instead, suboptimal techniques with reduced com-
putational load have dominated the field, such as the extrema-
searching [2], polynomial-rooting [3] and matrix-shifting [4]
techniques. The relationship between these techniques and
DML estimator was investigated in [5], and it is shown that
the performance of these techniques is inferior to that of the
DML.

As mentioned above, the DML has not attracted as much
attention as other suboptimal DOA estimation methods be-
cause its computational burden grows dramatically with in-
creasing number of impinging signals. Fortunately, several
efficient DML solutions have been proposed to reduce the
computational burden while maintaining a relatively high lev-
el of estimation performance, such as alternating projection
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(AP) [6], expectation maximization [7], method of direction
estimation [1] and spatial aliasing [8] methods.

Apart from the high computational load, another limita-
tion of the DML is the asymptotic efficiency problem. It is
shown in [1] that the DML estimator is not statistically effi-
cient if the number of snapshots is small. Furthermore, even
if the number of snapshots is large, the DML can achieve the
Cramer-Rao bound only if the number of sensors is increased,
namely, the array aperture should be large enough.

To further enhance the performance of the DOA estima-
tors, the temporal properties of the signals, such as the noncir-
cular (NC) property, can also be employed. The NC signals
such as BPSK, offset-QPSK, PAM and ASK-modulated sig-
nals, have been widely used in many modern communication
systems. By taking advantage of the NC properties of the re-
ceived signals, a number of improved subspace-based DOA
estimators have been proposed, such as the NC-MUSIC [9],
NC-root-MUSIC [10], NC-ESPRIT [11], NC unitary ESPRIT
[12, 13] and SLS-NC-ESPRIT [14].

In this paper, by exploiting the NC properties of the arriv-
ing signals, we devise a NC DML (NC-DML) estimator for
strictly NC sources. The derivation is based on the fact that
the real and imaginary parts of the strictly NC sources are
linearly dependent. As a result, unlike the conventional DML
scheme, the real and imaginary parts of the strictly NC signal-
s cannot be treated as independent random variables. More-
over, in analogy to the AP method [6], we present a novel
and computationally attractive NC AP (NC-AP) approach for
computing the NC-DML estimator.

The paper is organized as follows. In Section II, we for-
mulate the problem and review the DML estimator. In Section
III, we derive the NC-DML and present the NC-AP algorithm.
Simulation results are provided for performance comparison
in Section IV. Finally, Section V draws the conclusion.

The following notations are used throughout the paper.
Both Matrices and vectors are represented by bold-faced let-
ter. Superscripts (·)T , (·)H and (·)∗ stand for transpose, con-
jugate transpose and conjugate, respectively. The || · || and
tr{·} denote Euclidean norm and trace, respectively. I repre-
sents the identity matrix.
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2. PROBLEM FORMULATION

2.1. Signal Model

Let us consider an array of M sensors receiving d far-field and
narrow-band signals. The array measurements are modeled as

x(t) = As(t) + n(t) (1)

where s(t) = [s1(t), · · · , sd(t)]T is the signal vector, n(t) =
[n1(t), · · · , nM (t)]T contains the additive sensor noise and
A = [a(θ1), · · · ,a(θd)] is the steering matrix, which con-
sists of d array steering vectors a(θi), i = 1, · · · , d, with θi
representing the DOA of the i-th source. Here, we assume
that n(t) is a circular zero mean Gaussian random process
with covariance matrix σ2I . Moreover, the assumption that d
is known is made to simplify the exposition. The case of un-
known d was also discussed in the literature [15] by using the
information theoretic criterion, such as the AIC [16], MDL
[17] or their computationally efficient variants [18]-[19].

Suppose that the signals are strictly NC. In other words,
the complex symbol amplitudes of signals lie on a line in the
I/Q diagram, which may correspond to BPSK, offset QPSK
and PAM [13]. Consequently, the source snapshot vector can
be decomposed as [12]

s(t) = Ψso(t), (2)

where the diagonal matrix Ψ = diag{ejφ1 , . . . , ejφd} con-
tains the initial complex phase shift of each source, and so(t)
is the real-valued signal vector. As a result, the array obser-
vations are rewritten as

x(t) = AΨso(t) + n(t). (3)

2.2. DML

In the DML estimator case, the sources are regarded as un-
known deterministic sequences instead of sample functions of
random processes. Let t1, · · · , tN denote the time instant at
which the snapshots are taken. Then the array measurements
with N samples can be expressed as

X = AS +N = AΨSo +N (4)

where X and N are the M ×N matrices

X = [x(t1), · · · .x(tN )] (5)
N = [n(t1), · · · .n(tN )], (6)

both S and So are the d×N matrices

S = [s(t1), · · · .s(tN )] (7)
So = [so(t1), · · · .so(tN )]. (8)

It follows from (1) that the joint density function of the sam-
pled observations is therefore given by

f(X) =
N∏
i=1

1

(π)M (σ2
n)
M

exp(− 1

σ2
n

∥x(ti)−As(ti)∥2).

(9)
Thus, the negative log-likelihood, ignoring constant terms,
can be expressed as

L = MN logσ2
n +

1

σ2
n

N∑
i=1

∥x(ti)−As(ti)∥2. (10)

According to [6], by minimizing the negative log-likelihood
function, we obtain the well-known DML estimator

Θ̂DML = argmin
Θ

tr[P⊥
AR̂x] (11)

where Θ = [θ1, · · · , θd] denotes the DOA parameters to be
estimated,

P⊥
A = I −A(AHA)(−1)AH (12)

and
R̂x =

1

N
XXH (13)

corresponds to the sample covariance matrix.

3. PROPOSED ALGORITHM

In this section, a NC-DML estimator for the special case of
strictly NC sources is proposed. Subsequently, we present an
efficient NC-AP algorithm for computing this estimator.

3.1. NC-DML

In case of arbitrary signals, the number of parameters that
needs to be considered for the DML is equal to 2Nd+ d+ 1
[20][21]. However, for the strictly NC signals case in (2), the
parameter set is different. By substituting (2) into (10), we
have

L = MN logσ2
n +

1

σ2
n

N∑
i=1

∥x(ti)−AΨso(ti)∥2. (14)

It is observed from (14) that the set of parameters is giv-
en by the DOA parameters Θ ∈ Rd×1, the real-valued
signals vec{So} ∈ RNd×1, the initial phase angles φ =
[φ1 · · · , φd]T ∈ Rd×1, and the noise power σ2

n. Thus, the
number of parameters is now equal to Nd + 2d + 1. As a
result, it is required to derive a corresponding DML estimator
for the strictly NC signals. In this context, in order to simplify
the resulting model, we assume that the initial phase angles φ,
namely, Ψ, are known. Thus, the number of parameters need-
ed to be estimated reduces to Nd + d + 1. Note that several
efficient solutions [22][23] for the estimation of Ψ have been
provided in the literature.
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To compute the NC-DML estimator, we have to minimize
the cost function in (14) with respect to the unknown param-
eters. Fixing Θ and So, and then minimizing with respect to
σ2
n, we get

σ̂2
n =

1

MN

N∑
i=1

∥x(ti)−AΨso(ti)∥2. (15)

Substituting (15) into (14), we fix Θ and minimize with re-
spect to so(ti), i = 1, · · · , N . This yields the solution

ŝo(ti) =(ΨHAHAΨ+ΨTATA∗Ψ∗)−1

× [ΨHAHx(ti) +ΨTATx∗(ti)]. (16)

In contrast to the case of arbitrary signals where ŝo(ti) is only
related to the array observations x(ti), it is shown in (16) that
ŝo(ti) has some connection with both x(ti) and x∗(ti). Then
substituting ŝo(ti) back into the cost function we obtain the
following minimization problem

min
Θ

N∑
i=1

∥x(ti)−AΨ(ΨHAHAΨ+ΨTATA∗Ψ∗)−1

× [ΨHAHx(ti) +ΨTATx∗(ti)]∥2. (17)

Obviously, the estimator in (17) does not have the appealing
geometric interpretation as the general DML scheme. How-
ever, it is observed that the minimizing problem in (17) is
equivalent to minimizing the following cost function

J =2
N∑
i=1

∥x(ti)−AΨ(ΨHAHAΨ+ΨTATA∗Ψ∗)−1

× [ΨHAHx(ti) +ΨTATx∗(ti)]∥2

=
N∑
i=1

{
∥x(ti)−AΨ(ΨHAHAΨ+ΨTATA∗Ψ∗)−1

× [ΨHAHx(ti) +ΨTATx∗(ti)]∥2

+ ∥x∗(ti)−AΨ∗(ΨTATA∗Ψ∗ +ΨHAHAΨ)−1

× [ΨTATx∗(ti) +ΨHAHx(ti)]∥2
}

=
N∑
i=1

∥∥x̃(ti)− Ã(Ã
H
Ã)−1Ã

H
x̃(ti)

∥∥2 (18)

where x̃(ti) = [xT (ti),x
H(ti)]

T , Ã = [ΨTAT ,ΨHAH ]T .
In analogy to the DML estimator, according to (18), a similar
form of the NC-DML is given by

Θ̂NC-DML = argmin
Θ

tr[P⊥
Ã

ˆ̃Rx]. (19)

Here,
P⊥

Ã
= I − Ã(Ã

H
Ã)(−1)Ã

H
(20)

and
ˆ̃Rx =

1

N
X̃X̃

H
(21)

is the augmented sample covariance matrix with X̃ =
[XT ,XH ]T . Setting

PÃ = Ã(Ã
H
Ã)(−1)Ã

H
, (22)

the minimizing problem in (19) is equivalent to the following
maximizing problem

Θ̂NC-DML = argmax
Θ

tr[PÃ
ˆ̃Rx]. (23)

3.2. NC-AP technique

We start by solving the problem for a single source. In this
case, we yield the DOA estimate of the first source

θ̂
(0)
1 = argmax

θ1
tr[Pā(θ1)

ˆ̃Rx] (24)

where ā(θ1) = [aT (θ1),a
H(θ1)]

T . Next, we solve the sec-
ond source, fixing the first source at θ̂(0)1 ,

θ̂
(0)
2 = argmax

θ2
tr[P

[ā(θ̂
(0)
1 ),ā(θ2)]

ˆ̃Rx]. (25)

The procedure is continued until all the initial values Θ̂0 =

[θ̂
(0)
1 , · · · , θ̂(0)d ], are computed. As a result, the initial estimate

of Ã
(0)

is [ΨTA(0)T ,ΨHA(0)H ]T .
Continuing in this fashion, the value of θi at the (k+1)-th

iteration is obtained by solving the following problem

θ̂
(k+1)
i = argmax

θ
(k)
i

tr[P
Ã

k
i

ˆ̃Rx] (26)

where

Ã
(k)

i =

[
ejψ1a(θ̂

(k)
1 ) · · · ejψda(θ̂

(k)
d )

e−jψ1a∗(θ̂
(k)
1 ) · · · e−jψda∗(θ̂

(k)
d )

]
(27)

with θ
(k)
i replacing θ̂

(k)
i in the i-th column.

4. SIMULATION RESULTS

In this section, we present a number of simulation examples
that illustrate the superiority of the proposed NC-AP method.
For comparison, the empirical results of the MUSIC [2], NC-
MUSIC [9] and AP [6] methods are included. A uniform lin-
ear array consisting of M = 8 sensors with separation of
half wavelength is considered in our simulations. In all exam-
ples, we assume that there are two equipowered BPSK sig-
nals, their initial phases are 0◦ and 10◦, and their DOAs are
5◦ and 10◦, respectively. Moreover, 100 independent Monte-
Carlo trials are performed.

In the first example, we fix the number of snapshots at 60
and investigate the root mean square errors (RMSE) of the
DOA estimates as a function of signal-to-noise ratio (SNR).
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Fig. 1. RMSE of DOA estimates versus SNR for ρ = 0

Here, the source correlation coefficient is set as ρ = 0. Fig.
1 shows that the NC-AP performs much better than the other
methods, whereas the MUSIC and NC-MUSIC fail to provide
accurate DOA estimates especially at low SNR conditions.

Fig. 2 shows the RMSEs of the investigated methods ver-
sus SNR at ρ = 0.5. The number of snapshots is N = 60.
It is observed that the value of ρ has little influence on the
AP-based approaches. Moreover, we see that the output RM-
SEs of the MUSIC and AP algorithms are larger than the NC-
based schemes because they do not exploit the NC properties
of the signals.
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Fig. 2. RMSE of DOA estimates versus SNR for ρ = 0.5

The empirical results in Fig. 3 correspond to the scenario
where SNR = 5dB and ρ = 0. It is seen that the proposed
NC-AP technique still surpasses the other approaches even
when the number of snapshots is small. Since the proposed
approach is able to utilize the NC properties of the signals, it
is superior to the AP in estimation accuracy.

In this example, we fix the value of ρ at 0.5 and investi-
gate the RMSE of the DOAs as a function of the number of
snapshots. it is observed from Fig. 4 that the NC-AP and
NC-MUSIC, which exploit the NC properties of the signal-
s, achieve a performance improvement compared with their
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Fig. 3. RMSE of DOA estimates versus snapshot number for
ρ = 0

counterparts, i.e., AP and MUSIC. Furthermore, we can see
that the MUSIC-based algorithms with ρ = 0.5 have a dis-
tinctly performance degradation compared with the scenario
of ρ = 0.
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Fig. 4. RMSE of DOA estimates versus snapshot number for
ρ = 0.5

5. CONCLUSION

A NC-DML estimator for DOA estimation of strictly NC sig-
nals has been proposed in this paper. The derivation is based
on the fact that the number of parameters to be considered is
reduced for the strictly NC signals. For computing the NC-
DML, we present a novel NC-AP method. In analogy to the
AP scheme, the NC-AP is implemented in an iterative fashion
and converges to a local maximum eventually. However, un-
like the AP solution, the NC-AP technique is performed based
on the doubled virtual array structure. Moreover, it also has
taken the impact of the initial phase shift of the NC signals
into consideration. Simulation results show that the proposed
NC-AP solution is superior to the state-of-the-art algorithms
in terms of RMSE performance.
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