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ABSTRACT

Estimation of directions-of-arrival (DoA) in the spatial co-
variance model is studied. Unlike the compressed sensing
methods which discretize the search domain into possible di-
rections on a grid, the theory of super resolution is applied to
estimate DoAs in the continuous domain. We reformulate the
spatial spectral covariance model into a Multiple Measure-
ment Vector (MMV)-like model, and propose a block total
variation norm minimization approach, which is the analog
of Group Lasso in the super-resolution framework and that
promotes the group-sparsity. The DoAs can be estimated by
solving its dual problem via semidefinite programming. This
gridless recovery approach is verified by simulation results
for both uncorrelated and correlated source signals.

Index Terms— Directions of Arrival, Super Resolution,
Continuous Sparse Recovery, MMV, Group Lasso

1. INTRODUCTION

Directions-of-arrival (DoA) estimation is a common objective
in array signal processing. Locating, with high resolution,
closely-spaced DoAs with few snapshots is the main design
consideration. The multiple signal classification (MUSIC) [1]
is one widely used example of high-resolution DoA estima-
tior. Inspired by compressed sensing (CS), sparse model for-
mulations are also suggested for DoA estimation as well, usu-
ally by discretizing the variable space. Such approaches are
vulnerable to grid basis mismatch [2] which leads to failure
in recovering signals or degrading DoA estimation perforam-
nce. Thus, to accommodate this situation in the covariance
domain, the Sparse Spectral Fitting with Modeling Uncer-
tainty (SSFMU) method was proposed [3]. In [4], by lineariz-
ing the grid basis mismatch in a spatial covariance model, an
alternating Lasso is proposed to jointly estimate DoA and its
mismatch (more references of other approaches dealing with
grid basis mismatch in [4]).

The super-resolution (SR) approach presented by Candès
and Fernandes-Granda [5, 6] aims to provide a continuous
parameter recovery by solving a total variation (TV) norm
minimization of a complex measure, which is not the TV
norm used in image processing. In [7], atomic norm min-
imization (ANM) is proposed to estimate continuous fre-

quency spectrum with a subset of sensors. However, the
above SR methods are only studied in single-measurement-
vector (SMV) model. In [8], an exact joint sparse frequency
recovery method is proposed by using ANM in multiple-
measurement-vector (MMV) system, and a theoretical anal-
ysis on the continuous dictionary setting is provided. In [9],
the TV norm minimization employed in MMV is studied to
improve performance of DoA estimation, but the source sig-
nal is assumed zero-mean positive-valued random variables,
which is not a general case. In [10], a sublinear time random-
ized algorithm is designed to recover sparse Fourier sampling
signals with continuous-valued frequencies.

In this work, we formulate the DoA estimation problem in
the spatial covariance model, and reformulate it into a MMV-
like model. Use of the covariance model in the formulation of
a DoA estimator is desirable for a number of reasons, includ-
ing computational savings for large number of snapshots, and
exploitation of the methods that extrapolate array appertures
through their co-arrays, such as for the case of minimum-
redundancey [11] or co-prime arrays [12]. We extend the
theory of super-resolution from SMV to MMV by defining a
block total variation (BTV) norm for a complex measure with
same locations but different amplitudes at multiple snapshots.
Then, we propose a BTV norm minimization approach for the
MMV-like model. The performance of the proposed method
is demonstrated by simulations for cases of uncorrelated and
correlated source signals and compared with MUSIC, ANM-
MMV [8], and the Cramer-Rao Lower Bound (CRLB).

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. The DoA Estimation Problem

We consider a planar or linear array with M sensors. The
sampled vector y(t) = [y1(t), . . . , yM (t)]T ∈ CM×1 of the
signal model at time t is

y(t) = Gx(t) + n(t), t = 1, . . . , T, (1)

where x(t) = [x1(t), . . . , xK(t)]T ∈ CK×1 denotes K far-
field narrowband zero-mean sources with power σ2

1 , . . . , σ
2
K

and covariance matrix Cx which impinge on the array
from angles θ1, . . . , θK , and g(θk) ∈ CM×1 denotes the
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steering vector for the kth source located at θk with m-
th entry e−j2π dm

λ sinθk in which λ is the wavelength and
dm is the distance of the m-th sensor from a reference
one. For a uniform linear array (ULA), dm = md where
d is the inter-element spacing. The steering matrix G
= [g(θ1), · · · ,g(θK)] ∈ CM×K is formed by the steering
vectors {g(θk)}Kk=1. Denote n as Additive White Gaus-
sian Noise (AWGN) with CN (0, σ2I). T is the number of
measurement snapshot. The DoA support set is denoted as
Tθ = {sin(θk)}Kk=1 ⊂ T = [−1, 1] for arriving signals. The
MMV system is defined as

Y = [y(1), . . . ,y(T )] = GX+N (2)
= [Gx(1), . . . ,Gx(T )] +N,

where Y ∈ CM×T , X = [x(1), . . . ,x(T )] ∈ CK×T , and
N = [n(1), . . . ,n(T )] ∈ CM×T . The covariance matrix of
observed vectors for K uncorrelated sources is expressed as

R̃ = E[yyH ] = GCxG
H + σ2I.

In practice, by averaging the measured snapshots, R =∑T
t=1 y(t)y(t)

H/T is used as the estimate of covariance
matrix. Then the measurement based on spatial covariancel
model can be rewritten as

R =
K∑

k=1

σ2
kg(θk)g(θk)

H +V, (3)

where V represents the contributions of AWGN and the ap-
proximation error due to the sample averaging. Based on the
above models, the goal of DoA estimation problem is to es-
timate the support set Tθ. In the next subsection, the super-
resolution theory is introduced how to fit into the DoA esti-
mation problem in the scenario of SMV.

2.2. Preliminary Method of Continuous Signal Recovery

In the theory of super-resolution, consider a continuous signal
s(τ) which has sparse representations in the domain [−1, 1]
and a weighted linear combinations of spikes [5]:

s(τ) =
K∑

k=1

akδτk , (4)

where ak may be real or complex valued, τk ∈ [−1, 1], ∀k
and δτk is a Dirac measure at location τk. Denote s =
[a1, . . . , aK ]T as the data vector. The Fourier transform of
s(τ) is written as

r(n) =

∫ 1

−1

e−j2πnτs(dτ) =

K∑
k=1

ake
−j2πnτk , n = −fc, . . . , fc

where fc is an integer and 2fc + 1 is the number of Fourier
transform frequency coefficients. With arbitrary noise e

cosidered in this model, we simplify the above equation as

r = Fs+ e, (5)

where r = [r(−fc), . . . , r(fc)]
T ∈ CM×1, and F denotes

the linear operator to measure the 2fc + 1 lowest frequency
coefficients.

In order to estimate τk, the total variation (TV) norm
for a complex meaure [13] on a Borel set B ∈ Borel
σ-algebra B(T) is introduced and defined as ∥s∥TV =
sup

∑∞
k=1 |s(Bk)|, where the supremum is taken over all

partitions of B into countable and disjoint measurable subsets
Bk. The minimization of ∥s∥TV in the continuous domain is
used to promote the sparsity of continuous signal s, which is
the analog of the l1-norm minimization of ∥s∥1 =

∑
k |ak| in

the discrete domain. In [6], convex optimization problem is
suggested as

min
s

∥s∥TV s.t. ∥Fs− r∥2 ≤ ϵ. (6)

When the signal-measurement-vector system (1) is consid-
ered, by letting τk = sin(θk), ∀k and fc = (M − 1)/2, the
DoA estimation problem can be cast in the super-resolution
framework as follows

r = Fs+ e = Gx(t) + n(t) = y(t), (7)

and then solved by the TV norm minimization (6). For the
spatial covariance model (3), we can also vectorize the co-
variance matrix into a SMV system, and solve it by TV norm
minimization [14].

3. THE PROPOSED METHOD

3.1. Reformulation of the Spatial Covariance Model

Instead of vectorizing the spatial covariance model (3), we
recast it into a MMV-like model by the following:

R = [r0, r1, . . . , rM−1] =
K∑

k=1

σ2
kg(θk)g(θk)

H +V, (8)

= σ2
1Ḡ(θ1) + · · ·+ σ2

KḠ(θK) +V,

where g(θk)g(θk)
H = Ḡ(θk) is a Toeplitz matrix expressed

by Ḡ(θk) = [a0(θk),a1(θk), . . . ,aM−1(θk)] ∈ CM×M . For
ULA, the lth column of Ḡ(θk) is represented as al(θk)=
[e−j(−l)ξk , . . . , e−j(M−1−l)ξk ]T ∈ CM×1, ∀l = 0, . . . ,M −
1, in which ξk = d

λ2πsinθk. Then, the lth column rl ∈
CM×1 can be expressed as

rl = σ2
1al(θ1) + · · ·+ σ2

Kal(θK) + vl =
∑
k

σ2
kal(θk) + vl,

= Alp+ vl, ∀l = 0, . . . ,M − 1 (9)

where Al = [al(θ1), . . . ,al(θK)]∈ CM×K , p = [σ2
1 , . . . , σ

2
K ]T

∈ RK×1, and vl is the lth column of V. The matrix Al is
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composed of every lth column from matrices Ḡ(θ1), . . . , Ḡ(θK).
Therefore, R can be rewritten as

R = [r0, r1, . . . , rM−1] (10)
= [A0p,A1p, . . . ,AM−1p] +V,

which is a similar form to an MMV system in Equation (2).
In Equation (10), we have M vectors, r0, . . . , rM−1 with the
same power vector p. Unlike the MMV system, each matrix
Al is different, and each column of Ai is a rotational steer-
ing vector to the corresponding column of Aj , i.e., ai(θk) =
ai+1(θk)e

jξk . Equation (10) will be used to estimate the DoA
support set by the proposed method in the next subsections.
We will show how to extend the SR theory from SRV to
MMV-like system before introducing the proposed method.

3.2. Continuous Group-Sparsity Recovery Method

Based on the theory of super-resolution, we extend a con-
tinuous signal into the MMV space by defining s(τ ; t), τ ∈
[−1, 1], t = 1, . . . , T as

s(τ ; t) =
K∑

k=1

bktδτk , (11)

where bkt is a real or complex-valued amplitude of measure-
ment at time t, and τk ∈ [−1, 1],∀k is a location of kth spike.
Denote T = {τk}Kk=1 as the support set and S = [s1, . . . , sT ]
as the data matrix where st = [b1t, . . . , bKt]

T . Similarly
in [5], the Fourier transform of s(τ ; t) with respect to τ is

r(n; t) =

∫ 1

−1

e−j2πnτs(dτ) =

K∑
k=1

bk,te
−j2πnτk , (12)

n = −fc, . . . , fc, t = 1, . . . , T.

When Gaussian noise is considered in this model, Equation
(12) can be simplified as

rtsr = Fs(τ ; t) + et, ∀t = 1, . . . , T (13)

where rtsr = [r(−fc; t), . . . , r(fc; t)]
T ∈ CM×1, and et

denotes i.i.d. Gaussian noise vector with CN (0, σ2I). Let
Rsr = [r1sr, . . . , r

T
sr].

By using multiple measurements to estimate τk, a block
total variation (BTV ) norm for a complex meaure with mul-
tiple measurements on a set B ∈ B(T) is defined as

∥s∥TV,p = sup

∞∑
k=1

∥s(Bk; :)∥p, (14)

where ∥s(Bk; :)∥p = (
∑T

t=1 |s(Bk; t)|p)1/p and s(Bk; t) =
bk,t if the supremum is taken over all partitions {Bk} of B be-
longing to Borel σ-algebra [13] to optimally have a finite and
disjoint measurable subsets {Bk} at time t. Since at differ-
ent time t, multiple continuous signals s(τ ; t) share the same

spike locations, the group sparsity of s(τ ; t) can be promoted
by using the minimization of ∥s∥TV,p. This is equivalent to
the minimization of ∥S∥1,p =

∑
k ∥Sk,:∥p where Sk,: is the

kth row of data matrix S by the notion of Group Lasso [15].
Similarly in [6], based on Equation (11) and (13), the block
total variation (BTV ) minimization problem is proposed as

min
s

∥s∥TV,p s.t.
T∑

t=1

∥Fs− rtsr∥2 ≤ ϵ, (15)

where 1 ≤ p ≤ +∞.
When considering the MMV-like model (10) and letting

τk = sin(θk), t = l, T = M − 1, Rsr = R and fc =
(M − 1)/2, the DoA estimation problem can be formulated
in the new super-resolution framework as the following

rlsr = Fls(τ ; l) + el = Alp+ vl = rl, l = 0, . . . ,M − 1,

and then solved by the proposed BTV norm minimization

min
s

∥s∥TV,1 s.t.
M−1∑
l=0

∥Fls− rl∥2 ≤ ϵ. (16)

Note that the minimization of ∥s∥TV,1 is analog to ∥S∥1,1 in
this case. A theorem about DoA resolution for MMV system
can be claimed similarly by using Theorem 1.2 in [5].

Theorem 1 Let T = {τk}Kk=1 as the support set. If the mini-
mum distance ∆(θ) obeys

∆(θ) = inf
τi,τj∈T

|τi − τj | ≥
4

fc

λ

d
,

then the high resolution detail of continuous signal s can be
recovered with high probability by solving block total varia-
tion norm minimization problem (16).

In order to estimate the support set, the dual form of (16)
is derived as

max
U

Re{⟨R,U⟩} − ϵ∥U∥F (17)

s.t. ∥F∗
l ul(τ)∥∞ ≤ 1, ∀l = 0, . . . ,M − 1,

where U = [u0, . . . ,uM−1] ∈ CM×M and F∗
l ul(τ) =∑

|k|≤fc
ul,ke

j d
λ 2π(k−l)τ where ul = [ul,−fc , . . . , ul,fc ]

T ∈
CM×1. Re{⟨R,U⟩} takes the real part of tr(UHR) where
tr(·) takes the sum of diagonal entries of matrix. By a gener-
alized Slater condition [16], strong duality holds since ul =
0, ∀l, which satisfies the constraint, is contained in the feasi-
ble set. Although this problem is still with infinite constraints,
it can be reformulated as a semidefinite matrix and an affine
hyperplane. Thus, the dual problem is rewritten as

max
U

Re{< R,U >} − ϵ∥U∥F (18)

s.t.
[
Ql ul

uH
l 1

]
≽ 0, ∀l = 0, . . . ,M − 1

M−j∑
i=1

Ql
i,i+j =

{
1, j = 0,

0, j = 1, 2, . . . ,M − 1
,
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Fig. 1. RMSE of DoA estimation versus SNR for the case of
uncorrelated sources.

where Ql ∈ CM×M is a Hermitian matrix, ∀l. The following
lemma is modified from [5] and used to estimate the support
set by linking a primal solution with a dual solution.

Lemma 2 Let sest and ul,est be a pair of primal-dual solu-
tions to (15) and (18). Then

(F∗
l ul,est)(τ) = sign(sest(τ ; l)), ∀τ ∈ T s.t. sest(τ ; l) ̸= 0.

sign(·) takes the sign of any number. By performing the
root finding procedure on the |(F∗

l ul,est)(τ)|2 = 1, ∀l, we
can obtain the estimated support sets T l

est = {τ lk,est}Kk=1 and
its union set Test =

∪
l T l

est. Then, the measurement matrix
Gest is reconstructed based on Test. Finally in terms of Equa-
tion (2), Group Lasso [15] can be used to determine the true
source locations as the following

X̂ = argmin
X

1

2
||Y −GestX||2F + γ||X||2,1, (19)

where ||X||2,1 =
∑|Test|

k=1 ∥Xk,:∥2, and Xk,: denotes the kth

row of X and |Test| is the cardinality of Test.

4. NUMERICAL RESULTS

The proposed method (SR-BTV) is applied to the DoA esti-
mation problem and compared with MUSIC, ANM-MMV [8]
and the CRLB. An uniform linear array (ULA) of M = 9
sensors with half-wavelength interelement spacing is consid-
ered. The minimum distance ∆(θ) is set to 1. Suppose K =
2 narrowband plane waves impinging on ULA from DoAs
with sin(θ) = [0.2165251, 0.4665251]. The distance of two
sources is 0.25, which is ∆(θ)

4 . Two cases of uncorrelated and
correlated sources are considered. In the uncorrelated case,
two source signals are zero-mean complex-valued Gaussian

SNR (dB)

-10 -8 -6 -4 -2 0 2 4 6

R
M

S
E

 o
f 
D

o
A

 (
lo

g
 s

c
a
le

)

10-3

10-2

10-1

100
DoA

SR-BTV

ANM-MMV

MUSIC

CRLB

Fig. 2. RMSE of DoA estimation versus SNR for the case of
correlated sources.

random variables with equal power. In the correlated case,
the correlation coefficient of two sources is set to 0.9. For
MUSIC, the search grid of [−1, 1] is uniformly separated with
step size 0.0001. We performed one hundred realizations for
each SNR. The number of snapshots is T = 100.

The RMSE of DoA estimation for the case of uncorre-
lated source signals is presented in Figure 1. At high SNR,
the performance of SR-BTV and MUSIC are almost the same
and approach the CRLB. However, at low SNR, the SR-BTV
method shows a lower resolution threshold than MUSIC. For
instance, when RMSE ≈ 10−1, the SR-BTV method out-
performs MUSIC about 2 dB. ANM-MMV has slight im-
provement over MUSIC at low SNR, but does not have good
performance at high SNR. In Figure 2, the performance for
the correlated case is presented. Since the covariance matrix
of source signals is not diagonal anymore, the performance
of SR-BTV, ANM-MMV and MUSIC degrade and all are
more far away from the CRLB compared with the uncorre-
lated case. However, the SR-BTV and ANM-MMV are more
robust to source correlations and achieves better performance
than MUSIC at low SNR. At SNR= −10 dB, the RMSE of
SR-BTV is approxmately 0.0464 while the RMSE of MUSIC
is about 0.4318.

5. CONCLUSION

By reformulating the spatial covariance model into an MMV-
like system, group sparsity is exploited in the super-resolution
framework. An BTV norm minimization approach is pro-
posed for the reformulated model. The DoAs are estimated
by solving its dual. Numerical results demonstrate the robust
performance of SR-BTV compared wtih MUSIC and ANM-
MMV in cases of uncorrelated and correlated sources.
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