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ABSTRACT

In this paper, an improved direction-of-arrival (DOA) estimation al-
gorithm for circular and non-circular signals is proposed. Most state-
of-the-art algorithms only deal with the DOA estimation problem
for the maximal non-circularity rated and circular signals. However,
common non-circularity rated signals are not taken into considera-
tion. The proposed algorithm can estimates not only the maximal
non-circularity rated and circular signals, but also the common non-
circularity rated signals. Based on the property of the non-circularity
phase and rate, the incident signals can be divided into three types
as mentioned above, which can be estimated separately. The inter-
relationship among these signals can be reduced significantly, which
means the resolution performance among different types of signal-
s is improved. Simulation results illustrate the effectiveness of the
proposed method.

Index Terms— Direction-of-arrival (DOA) estimation, circular
and non-circular signals, MUSIC algorithm

1. INTRODUCTION

Direction-of-arrival (DOA) estimation has been one of the central
problems in radar, sonar, navigation, geophysics, and acoustic track-
ing, which plays an important role in array signal processing [1].
A wide variety of high-resolution narrowband DOA estimation al-
gorithms have been proposed and analyzed in the past few decades
[2, 3, 4, 5, 6]. However, the DOA estimation methods above are
only applicable to estimate circular signals, the DOA estimation per-
formance of non-circular signals cannot be improved by using these
methods, since they did not exploit the non-circularity property of
non-circular signals.

The non-circular signals have been applied in various of com-
munication systems. For example, amplitude modulated (AM) and
binary phase shift keying (BPSK) modulated signals are widely used
in satellite systems. Thus some algorithms [7, 8] have been pro-
posed for DOA estimation of non-circular signals. Existing works
have also addressed the problem of how to increase the number of
detectable sources and improve the estimation accuracy [9, 10, 11].
However, these algorithms cannot deal with the situation where cir-
cular and non-circular signals coexist. In [12], the MUSIC-like al-
gorithms have been extended to non-circular signals. However, as
pointed out in [13], the method in [12] has the drawback that when
the maximal non-circularity rated, common non-circularity rated,
and circular signals coexist. In the case of low SNR, small snap-
shot numbers, and large source numbers, more than one spectrum
peakings may appear in the neighborhoods of DOAs of common
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non-circularity rated and circular signals in a certain probability. The
method proposed in [14] estimates non-circular and circular signals
simultaneously. However, when two types of signals are too close,
this method cannot resolve them. The method proposed in [15] es-
timates non-circular and circular signals separately. Its estimation
accuracy is lower than that of the MUSIC method in large DOA
separation. Moreover, these algorithms [14, 15] cannot estimate the
DOAs of the common non-circularity rated signals with high accu-
racy.

In this paper, we propose a novel DOA estimation algorithm
for circular and non-circular signals with high resolution. Different
types of signals are estimated separately. The preliminary DOAs for
the maximal and common non-circularity rated signals are estimat-
ed first. Based on a new extended noise subspace, the DOAs for the
common non-circularity rated signals are estimated with high accu-
racy. Then the effects of these signals on extended covariance matrix
are eliminated by spatial differencing. Based on the previous work
of the author in [13], the DOAs for circular signals are estimated
with the extended received data vector. The DOAs for the maximal
non-circularity rated signals are estimated finally.

2. PROBLEM FORMULATION

Assume that q narrowband plane wave signals are impinging on an
M -element uniform linear array (ULA) with interelement spacing d
from θ= [θ1, . . . , θq]. The output of M sensors can be expressed as

x(t) = A(θ)s(t) + n(t), t = 1, . . . , N (1)

where s(t) ∈ Cq×1 represents the signal waveforms; n(t) ∈ CM×1

is the white circular complex Gaussian noise with zero-mean and
variance σ2; N is the number of available snapshots; A(θ) ∈ CM×q

is the manifold matrix with the form

A (θ) = [a1 (θ) , . . . ,aq (θ)] , (2)

and the steering vectoring of the ith (i = 1, 2, . . . , q) signal can be
expressed as

a (θi) =
[
1, ejτ(θi), . . . , ej(M−1)τ(θi)

]T
∈ CM×1 (3)

where τ (θi) = 2πd sin θi/λ, λ denotes the signal wave length. The
covariance matrix R of x(t) can be expressed as

R = E
{
x (t)xH (t)

}
= ARSA

H + σ2
nIM , (4)

where RS=diag
{
σ2
1 , . . . , σ

2
q

}
is the signal covariance matrix, and

σ2
i is the power of the ith signal.
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For non-circular signal s, it holds that [12]

E [s(t)s(t)] = ρejβE [s(t)s∗(t)] , (5)

in which β and ρ are the non-circularity phase and rate, respectively.
ρ = 1 and 0 < ρ < 1 stand for the maximal and common non-
circularity rated signal, respectively.

Assume that the signal vector s(t) contains q non-circular sig-
nals,its unconjugated covariance matrix is given by

R′
S = E

[
s(t)sT (t)

]
= diag{E [s1(t)s1(t)] , . . . , E [sq(t)sq(t)]}

= diag{ρ1ejβ1σ2
1 , . . . , ρqe

jβqσ2
q}

∆
= PBRS ,

(6)

where P is a diagonal matrix, whose diagonal entries are the
non-circularity rates of the q signals and is defined as P =
diag{ρ1, ρ2, . . . , ρq}. B is a diagonal matrix, whose diagonal
entries are the non-circularity phases of the q signals and is defined
as B = diag{exp (jβ1) , exp (jβ2) , . . . , exp (jβq)}. When the
q signals are all circular signals, the non-circularity rate matrix
satisfies R′

S = 0.
As mentioned in [14], it is more realistic that some users send

non-circular symbols while other users still send circular symbols.
Thus assume that the number of the maximal non-circularity rated,
common non-circularity rated and circular signals are qncm, qncn

and qc, respectively, with qncm+qncn+qc = q. We aim to estimate
the DOAs of the q circular and non-circular signals by exploiting the
N snapshots of the array output vector x(t).

3. THE PROPOSED METHOD

Since the unconjugated covariance matrix of the non-circularity rat-
ed of circular signals and noise all equal to zero, the unconjugated
covariance matrix R′ can be written as

R′ = APBRSA
T =

[
Ancm Ancn

]
×[

BncmRSncm 0
0 PncnBncnRSncn

] [
AT

ncm

AT
ncn

]
= AncmBncmRSncmAT

ncm +AncnPncnBncnRSncnA
T
ncn

(7)
where the subscripts (·)ncm and (·)ncn stand for the matrix or vec-
tor corresponding to the maximal and common non-circularity rated
signals, respectively. We construct a new matrix

R′R′H = APBRSA
TA∗(PBRS)

HAH

∆
= AR̃SA

H .
(8)

It can be known that rank {R′} = rank
{
R′R′H

}
= qncm +

qncn ≤ M − 1. i.e., the matrix R′ and R′R′H are not full rank
matrices. Taking singular value decomposition (SVD) of R′R′H ,
we have

R′R′H = Q1Λ
2QH

2

=
[
QS1 QN1

] [ Λ2
S

0

] [
QH

S1

QH
N1

]
(9)

where Q1 and Q2 stand for the left and right singular eigen-
matrices of the matrix R′, respectively. ΛS is a diagonal matrix
whose diagonal entries are constructed by qncm+qncn non-zero sin-
gular values.

Based on traditional MUSIC algorithm, the spatial spectrum
function fnc (θ) corresponding to the maximal and common non-
circularity rated signals can be constructed as

fnc(θ) = aH(θ)QN1Q
H
N1a(θ). (10)

3.1. DOA Estimation for Common Non-Circularity Rated Sig-
nals

However, the estimation accuracy is not improved since only the un-
conjugated covariance matrix is used. In this subsection, the conju-
gated and unconjugated covariance matrices are applied to improve
the DOA estimation accuracy of the common non-circularity signals.
The extended received data vector y(t) is constructed as

y(t) =

[
x(t)
x∗(t)

]
. (11)

Then the eigen-value decomposition (EVD) of the covariance matrix
Ry of y(t) is performed as

Ry = USΣSU
H
S +UNΣNUH

N

= USΣSU
H
S + σ2

nUNUH
N .

(12)

where the column vectors of US and UN are constructed by the
eigenvectors corresponding to q large eigenvalues and 2M−q small
eigenvalues, respectively. The entries of diagonal matrices ΣS and
ΣN are constructed by q large singular values and 2M − q small
singular values, respectively.

According to the structure of y(t) in (11), the noise subspace
UN is partitioned into two block matrices

UN =

[
UN1

UN2

]
. (13)

According to [13], for the common non-circularity rated and cir-
cular signals, the space spanned by the corresponding steering vec-
tors is orthogonal to the block matrix UN1. Thus a new matrix W
is constructed

W =
[
QN1 UN1

]
, (14)

which is orthogonal to the common non-circularity rated signals
with AH

ncnW = 0. In order to improve the estimation accuracy,
the column space of the matrix W needs to be combined, and the
unit orthogonalization is taken for the columns. Since QN1 ∈
CM×(M−qncm−qncn) and UN1 ∈ CM×(2M−qncm−2qncn−2qc), we
have W ∈ CM×(3M−2qncm−3qncn−2qc). The SVD is taken on W,
i.e.,

W = W1ΛwW
H
2 , (15)

where W2 ∈ C(3M−2qncm−3qncn−2qc)×(3M−2qncm−3qncn−2qc)

and W1 ∈ CM×M are the right and left singular eigen-matrices of
W, respectively; Λw is a diagonal matrix whose diagonal entries
are constructed by the non-zero singular values of W. Then W1

can be partitioned into block matrices as

W1 =
[
W11 W12

]
, (16)

where W11 ∈ CM×w is orthogonal to the manifold matrix of the
common non-circularity rated signals. i.e.,

Ancn
HW11 = 0, (17)

and w satisfies

w = min {3M − 2qncm − 3qncn − 2qc,M − qncn} . (18)

The spatial spectrum function for the common non-circularity rated
signals can be constructed as

fncn(θ) = aH(θ)W11W
H
11a(θ). (19)
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3.2. DOA Estimation for Circular Signals

Based on the DOA estimation of the common non-circularity rat-
ed signal, its manifold matrix can be reconstructed as Âncn =

A(θ̂ncn). It can be seen that the low accuracy DOA estimate of (10)
contains the maximal and common non-circularity rated signals. For
the common non-circularity rated signals, the DOA estimation of
(10) can be replaced by (19). The low accuracy manifold matrix
estimation of qncm maximal non-circularity rated signals can be ob-

tained ˙̂
Ancm = A(

˙̂
θncm), where ˙̂

θncm stands for the low accuracy
DOA estimation of the maximal non-circularity rated signal. Then
the manifold array Ânc of the maximal and common non-circularity
rated signals can be reconstructed as

Ânc =
[

˙̂
Ancm Âncn

]
. (20)

Based on the property of pseudo inverse matrix [15], (7) can be
rewritten as (

Ânc

)†
R′

(
ÂT

nc

)†
= PBRS

=

[
BncmRSncm 0

0 PncnBncnRSncn

]
.

(21)

Then the matrix in (18) can be partitioned into block matrices as
follows (

Ânc

)†
R′

(
ÂT

nc

)†
=

[
R1 R2

R3 R4

]
, (22)

where R1 ∈ Cqncm×qncm and R2 ∈ Cqncn×qncn . Then the un-
conjugated covariance matrix of the common non-circularity rated
signals can be estimated as

R̂′
Sncn

= R4. (23)

In modern wireless communication systems, the modulation
modes of the signals can be detected. The non-circularity rated of
the non-circular signals can be confirmed uniquely, i.e., the non-
circularity rated matrix P̂ncn of the non-circular signals is known
as a prior information. Then the covariance matrix of the common
non-circularity rated signals can be estimated as(

R̂Sncn

)
ii
=

∥∥∥(P̂−1
ncnR4

)
ii

∥∥∥ , (24)

where (·)ii stands for the ith diagonal entry of a diagonal matrix.
Based on (20), the conjugated and unconjugated covariance matrices
R̂ncn and R̂′

ncn for the common non-circularity rated signals can
be respectively estimated as

R̂ncn = Âncn

∥∥∥(P̂−1
ncnR4

)
ii

∥∥∥ ÂH
ncn, (25)

R̂′
ncn = ÂncnR4Â

T
ncn. (26)

Since the DOAs of the common non-circularity rated signals
have already been estimated, the information of the common non-
circularity rated signals can be eliminated from the covariance ma-
trix Ry . A new matrix R̃ncn can be constructed as

R̃ncn =

[
R̂ncn R̂′

ncn(
R̂′

ncn

)∗ (
R̂ncn

)∗

]
. (27)

Then a differencing matrix Ry−ncn can be defined as

Ry−ncn = Ry − R̃ncn. (28)

According to the analysis in [13], for the common non-circularity
rated and circular signals, the corresponding steering vectors satisfy{

aH(θ)UN1 + ejϕaT (θ)UN2 = 0,
−aH(θ)UN1 + ejϕaT (θ)UN2 = 0,

(29)

i.e.,
aH(θ)UN1 = 0,aT (θ)UN2 = 0. (30)

It can be seen that the two equations in (30) have the same infor-
mation based on UN2 = U∗

N1∆ [12]. For the circular signals, the
spectrum estimation function can be expressed as

f(θ) =
∥∥∥aH(θ)UN1

∥∥∥
F
= aH(θ)UN1U

H
N1a(θ). (31)

The DOAs of the circular signals can be obtained by searching qc
minimum values of (31). The DOA estimation accuracy of the circu-
lar signals should be improved since the covariance of the extended
received data vector is used.

3.3. DOA Estimation for Maximal Non-Circularity Rated Sig-
nals

It should be known that the extended received data vector has to
be used in order to improve the DOA estimation performance of
the maximal non-circularity rated signals. For the maximal non-
circularity rated signals, it should be noted that the extended steering
vectors satisfies[

ai(θ)
e−jβia∗

i (θ)

]H [
ŪN1

ŪN2

]
= 0, i = 1, 2, . . . qncm. (32)

According to the analysis in [13], the spectrum estimation func-
tion of the maximal non-circularity rated signals can be expressed
as

f(θ) = aH(θ)UN1U
H
N1a(θ)−

∣∣∣aT (θ)UN2U
H
N1a(θ)

∣∣∣ . (33)

However, the DOAs of circular signals can make (33) achieve the
minimum as well. In order to eliminate the effect of circular sig-
nals, some measures should be taken to solve this problem. For
the maximal and common non-circularity rated signals, it holds that
aH(θ)QN1 = 0. However, the circular signals do not satisfy this
relationship. Thus a new spectrum function for the maximal non-
circularity rated signals can be constructed as

fncm(θ) = aH(θ)
(
ŪN1Ū

H
N1 +QN1Q

H
N1

)
a(θ)−∣∣aT (θ)ŪN2Ū

H
N1a(θ)

∣∣ . (34)

Thus, the DOA estimation for the common non-circularity rated
signals, circular signals and maximal non-circularity rated signals
is completed finally. And the proposed algorithm called high res-
olution MUSIC (HRNC-MUSIC) algorithm has higher resolution
than that of the DRNC-MUSIC and DRNC-MUSIC-C algorithm
proposed in [13].

4. THE ALGORITHM ANALYSIS

Based on the algorithms proposed in [13], the HRNC-MUSIC al-
gorithm exploits the characteristic of non-circularity further. When
the incident signals co-exist the maximal non-circularity rated, com-
mon non-circularity rated and circular signals, the HRNC-MUSIC
algorithm can estimate them in turn. The phenomenon of pseudo
peakings appearing at the neighbourhoods of DOAs of the common
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non-circularity rated and circular signals in the algorithms proposed
in [12, 13] is avoided in the HRNC-MUSIC algorithm.

In order to validate the performance of the angular resolution
of the proposed algorithm, an example is given as follows. Assume
five narrowband farfield signals impinge on a ULA with five ele-
ments. The interelement spacing is d = λ/2, the signal-to-noise
ratio (SNR) is fixed at 3dB, and the snapshot number is fixed at
500. The DOAs of two BPSK signals (non-circular ones with non-
circularity rate of 1) are 35◦ and 95◦, respectively. The DOAs of
two QPSK signals (circular ones with non-circularity rate of 0) are
40◦ and 125◦, respectively. The DOA of one UQPSK signal (the
common non-circularity rated signal) is 135◦. The spatial spec-
trum curves of DRNC-MUSIC algorithm and DRNC-MUSIC-C and
HRNC-MUSIC algorithms are depicted in Fig. 1(a) and Fig. 1(b),
respectively.
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Fig. 1. The spatial spectrum of different algorithms.

It can be seen from Fig. 1(a) that the pseudo peakings are ob-
vious which are estimated by the DRNC-MUSIC algorithm. The
DOAs of the maximal non-circularity rated signals are severely af-
fected by these pseudo peakings. The DRNC-MUSIC-C algorithm
can only estimate the common non-circularity rated and circular sig-
nals. When the angular distance of two types of signals are too close,
the DRNC-MUSIC-C algorithm can not resolve them exactly. How-
ever, from Fig. 1(b), it can be seen that three spatial spectrums are
utilized which are corresponding to the common non-circularity rat-
ed, circular and maximal non-circularity rated signals, respectively.
Three types of signals are estimated in turn by the HRNC-MUSIC
algorithm, the phenomenon of pseudo peakings is avoided, and the
interrelationship between two different types of signals can be avoid-
ed as well.
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Fig. 2. The estimation performance versus SNR.

5. SIMULATION RESULTS

In the following examples, a ULA with interelement spacing d =
λ/2 is employed. we compare the performance of the proposed

(HRNC-MUSIC) algorithm, the MUSIC algorithm [2], and the NC-
MUSIC algorithm in [12] by simulations. All the results are aver-
aged over 100 Monte Carlo runs.

In the first example, we compare the estimation accuracy of
different algorithms under the coexistence of both circular and
non-circular sources. In order to test the estimation performance
of HRNC-MUSIC algorithm, different types of signals with small
angular distance are selected. We assume that four uncorrelated
signals from 35◦, 65◦, 75◦ and 85◦, respectively, impinge on a
six-element ULA, and consider three cases where there are two,
one, and one sources, respectively. For the case with two sources,
the source coming from 35◦ and 65◦ are supposed to send BPSK
symbols with the non-circularity phases 10◦ and 20◦, respectively;
for the case with the former one source, the source from 75◦ sends
QPSK symbol, for the case with the latter one source, the source
from 85◦ sends QPSK symbol with the non-circularity phase 40◦

and the non-circularity rated 0.5. The snapshot number is fixed at
500. The root mean-square error (RMSE) is used to evaluate the
performance of the algorithms.

The RMSEs versus the SNR of different algorithms are shown in
Fig. 2(a). We see that the HRNC-MUSIC algorithm performs better
than the traditional MUSIC and NC-MUSIC algorithm. Moreover,
it is noticed that the performance of the proposed method becomes
better when SNR increases. This result is mainly due to that the
HRNC-MUSIC algorithm estimates different types of signals sep-
arately. The effect of different types of signals is reduced, which
makes the algorithm has a high estimation accuracy. However, an-
other two algorithms estimate them simultaneously, the estimation
accuracy is affected by the interrelationship among different types
of signals.

The second example studies the resolution probability of differ-
ent algorithms under different SNRs. The simulation condition is the
same as the first example. The resolution probability versus the SNR
of different algorithms are shown in Fig. 2(b). it can be seen that the
resolution probability of different algorithms increases as the SNR
increases. The resolution probability of the HRNC-MUSIC algo-
rithm is higher than that of the NC-MUSIC and MUSIC algorithms.
The estimation performance of the HRNC-MUSIC algorithm is sta-
ble at high SNR.

6. CONCLUSIONS

A novel DOA estimation algorithm is proposed under the coex-
istence of circular and non-circular signals. The maximal non-
circularity rated, common non-circularity rated and circular signals
can be estimated separately. The interrelationship among these sig-
nals can be reduced significantly, resulting in a higher resolution.
The proposed algorithm performs better than traditional MUSIC
and NC-MUSIC algorithm in small angular distance. In the future,
we will focus on the DOA estimation algorithm under the coexis-
tence of circular and non-circular signals with a low computational
complexity.
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