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ABSTRACT

Spherical harmonics root-MUSIC (MUltiple SIgnal Classification)

technique for source localization using spherical microphone array

is presented in this paper. Earlier work on root-MUSIC is limited to

linear and planar arrays. Root-MUSIC for planar array utilizes the

concept of manifold separation and beamspace transformation. In

this paper, the Vandermonde structure of array manifold for a partic-

ular order is proved. Hence, the validity of root-MUSIC in the spher-

ical harmonics domain is confirmed. The proposed method is eval-

uated by using simulated experiments on source localization. Root

mean square error analysis and statistical analysis are presented. The

experimental measures at various signal to noise ratios (SNRs) show

the robustness of the proposed method. The method is also verified

by using experiment on real signal acquired over spherical micro-

phone array.

Index Terms— Root-MUSIC, Spherical microphone array,

Spherical harmonics, Manifold separation

1. INTRODUCTION

The use of accurate and search free algorithms for estimating di-

rection of arrival (DOA) has been a very active research area in

source localization. Root-MUSIC (MUltiple SIgnal Classification)

[1] and Estimation of Signal Parameters using Rotational Invariance

Techniques, ESPRIT [2], fall into this category. The root-MUSIC

method estimates DOAs as the roots of MUSIC [3] polynomial ow-

ing to Vandermonde structure of array manifold. Such a structure

is not observed in array manifold for uniform circular array (UCA)

[4]. Zoltowski proposed beamspace transformation based on phase

mode excitation to get the Vandermonde structure in array manifold

with respect to azimuth angle [5]. Hence, it enables the applica-

tion of root-MUSIC to azimuth estimation at a given elevation. The

technique was further extended to sparse UCA root-MUSIC in or-

der to utilize the modified beamspace transformation [6]. Another

approach for extending the ULA root-MUSIC to a planar array is

presented in [7] using manifold separation. The idea of manifold

separation is to write the planar array steering vector (array mani-

fold) as a product of a characteristic matrix of the array and a vector

with Vandermonde structure depending on the azimuth angle. The

manifold separation which utilizes spherical harmonics (SH) is in-

troduced in [8].

After the introduction of higher order spherical microphone ar-

ray and associated signal processing in [9] and [10], various existing

DOA estimation techniques were reformulated in the spherical har-

monics domain. The element space MUSIC was implemented in

This work was funded in part by DST project EE/SERB/20130277 and
in part by BITCOE, IIT Kanpur.

terms of spherical harmonics, called SH-MUSIC, in [11] and [12].

The Minimum Variance Distortionless Response (MVDR) spectrum

in terms of spherical harmonics, SH-MVDR, was utilized for DOA

estimation in [11]. MUSIC-Group delay [13] was formulated for

source localization using spherical array in [14] and [15]. Differ-

ential geometry was explored for SH domain source localization in

[16]. In this work, we have developed the theory of root-MUSIC

in SH domain using manifold separation technique. The theory is

validated using simulation and real data experiments. The proposed

SH-root-MUSIC (SH-RM) technique provides exact solution with-

out the limitation from the discretization issues associated with the

SH-MUSIC and SH-MVDR methods for DOA estimation.

2. THE SPHERICAL HARMONICS DATA MODEL

A spherical microphone array of order N , radius r and the number

of sensors I is considered. A sound field of L plane-waves is in-

cident on the array with wavenumber k. The lth source location is

denoted by Ψl = (θl, φl). The elevation angle θ is measured from

the positive z axis, while the azimuthal angle φ is measured counter-

clockwise from the positive x axis. Similarly, the ith sensor location

is given by Φi = (θi, φi).
In spatial domain, the sound pressure at I microphones, p(k) =

[p1(k), p2(k), . . . , pI(k)]
T , is written as

p(k) = V(k)s(k) + n(k) (1)

where pi(k) ≡ p(k, r, θi, φi), V(k) is an I×L steering matrix, s(k)
is a L×1 vector of signal amplitudes, n(k) is an I×1 vector of zero

mean, uncorrelated sensor noise and (.)T denotes the transpose. The

steering matrix V(k) is expressed as

V(k) = [v1(k),v2(k), . . . ,vL(k)], where (2)

vl(k) = [e−jkT

l
r1 , e

−jkT

l
r2 , . . . , e

−jkT

l
rI ]T (3)

kl = −(k sin θl cos φl, k sin θl sinφl, k cos θl)
T

(4)

ri = (r sin θi cos φi, r sin θi sinφi, r cos θi)
T

(5)

where j =
√
−1. The ith term in (3) refers to the pressure due to

lth unit amplitude planewave with wavevector kl at location ri. This

may alternatively be written as [17]

e
−jkT

l
ri =

∞
∑

n=0

n
∑

m=−n

bn(kr)[Y
m
n (Ψl)]

∗
Y

m
n (Φi) (6)

where bn(kr) is called mode strength.

The far-field mode strength, bn(kr), is given by

bn(kr) = 4πjnjn(kr), for open sphere (7)

= 4πjn
(

jn(kr)− j′n(kr)

h′
n(kr)

)

, for rigid sphere (8)
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where jn(kr) is the spherical Bessel function, hn(kr) is nth order

spherical Hankel function of second kind and ′ refers to the first

derivative. Figure 1 illustrates mode strength bn as a function of

kr and n for an open sphere. For kr = 0.1, the zeroth order mode

amplitude is 22 dB, while the first order has an amplitude of −8 dB.

It is seen that for an order greater than kr, the mode strength bn
decreases significantly. Therefore, the summation in (6) is truncated

to a finite value of N , which is known as the array order.
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Fig. 1. Mode amplitude bn for an open sphere as a function of kr

and n

The spherical harmonic of order n and degree m, Y m
n (Ψ), is

given by

Y
m
n (Ψ) =

√

(2n+ 1)(n−m)!

4π(n+m)!
P

m
n (cosθ)ejmφ

,

∀0 ≤ n ≤ N, 0 ≤ m ≤ n

= (−1)|m|
Y

|m|∗
n (Ψ),∀ − n ≤ m < 0, (9)

where Y m
n is solution to the Helmholtz equation [18] and Pm

n is

the associated Legendre function. Figure 2 shows the plot of three

spherical harmonics. It should be noted that Y 0
0 is isotropic while

Y 0
1 and Y 1

1 have directional characteristics. The spherical harmon-

ics are used for spherical harmonics decomposition of a square in-

tegrable function, similar to the complex exponential ejωt used for

decomposition of real periodic functions [19].

Fig. 2. Spherical harmonics plot, Y 0
0 , Y 0

1 , Y 1
1

Substituting (3) and (6) in (2), the expression of steering matrix

becomes

V(k) = Y(Φ)B(kr)YH(Ψ) (10)

where Y(Φ) is I × (N + 1)2 matrix whose ith row is given as

y(Φi) = [Y 0
0 (Φi), Y

−1
1 (Φi), Y

0
1 (Φi), Y

1
1 (Φi), . . . , Y

N
N (Φi)].

(11)

The L × (N + 1)2 matrix Y(Ψ) can be expanded on similar lines.

The (N + 1)2 × (N + 1)2 matrix B(kr) is given by

B(kr) = diag(b0(kr), b1(kr), b1(kr), b1(kr), . . . , bN(kr)).
(12)

With the introduction of spherical harmonics, the spherical har-

monics decomposition of the received pressure, p(k), is given as

[20]

pnm(k) =

∫ 2π

0

∫ π

0

p(k)[Y m
n (Φ)]∗ sin(θ)dθdφ

∼=
I

∑

i=1

aipi(k)[Ynm(Φi)]
∗
, (13)

where pnm(k) is spherical Fourier coefficient. The spatial sampling

of pressure over a spherical microphone array is captured by using

sampling weights, ai [21]. Re-writing (13) in a matrix form, we have

pnm(k) = Y
H(Φ)Γp(k), (14)

where pnm(k) = [p00, p1(−1), p10, p11, . . . , pNN ]T and Γ =
diag(a1, a2, · · · , aI). Also, under the assumption of (13), we have

the orthogonality property of spherical harmonics as follows

Y
H(Φ)ΓY(Φ) = I, (15)

where I is an (N + 1)2 × (N + 1)2 identity matrix. Substituting

(10) in (1), then multiplying both sides with YH(Φ)Γ and utilizing

the relations in (14) and (15), we have the data model in spherical

harmonics domain as

pnm(k) = B(kr)YH(Ψ)s(k) + nnm(k). (16)

For a given array configuration, B(kr) is a constant. Therefore,

we get the final spherical harmonics data model by multiplying both

sides of (16) with B−1(kr) as

anm(k) = Y
H(Ψ)s(k) + znm(k), (17)

where

znm(k) = B
−1(kr)nnm(k). (18)

3. THE SPHERICAL HARMONICS ROOT-MUSIC

Root-MUSIC estimates DOAs as roots of the MUSIC polynomial.

Hence, we first write the MUSIC spectrum in spherical harmonics

domain. Comparing the spatial data model in (1) with spherical har-

monics data model in (17), [YH(Ψ)](N+1)2×L is the steering matrix

in spherical harmonics domain. Hence, the SH-MUSIC spectrum is

written as

PSH−MUSIC(Ψ) =
1

y(Ψ)SNS
anm

[SNS
anm

]HyH(Ψ)
, (19)

where yH(Ψ) is a steering vector defined in (11). SNS

anm
is the noise

subspace obtained from eigenvalue decomposition of autocorrelation

matrix, Sanm
= E[anm(k)anm(k)H ]. Frequency smoothing and

whitening of noise should be applied as in [11]. The SH-MUSIC

spectrum is shown in Figure 3(a) for two sources at (20◦,40◦) and

(20◦,80◦). The two peaks in the figure correspond to the two sources.

The SH-MUSIC spectrum in (19) results in a peak which corre-

sponds to a source owing to orthogonality between noise eigenvec-

tor and steering vector. A comprehensive search algorithm is needed

to estimate the DOA of the desired source. The resolution is also

limited by the resolution of discretization at which the spectrum is

evaluated. The SH-root-MUSIC overcomes these limitations in es-

timating the DOAs. We first illustrate the Vandermonde structure in

the steering vector using manifold separation technique. Utilizing
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Fig. 3. (a) SH-MUSIC spectrum (b) SH-root-MUSIC illustrating the actual DOA estimates (red poles) and noisy DOA estimates (blue poles)

(order of the spherical array, N = 4, sources at (20◦,40◦), (20◦,80◦) and SNR=15dB).

(9) and (11), the steering vector for co-elevation θ0 can be written in

a more compact form as

y
H(Ψ) = y

H(θ0, φ)

= [f00,−f1(−1)e
jφ
, f10, f11e

−jφ
, · · · , fNN e

−jNφ]T

(20)

where, fnm =

√

(2n+ 1)(n− |m|)!
4π(n+ |m|)! P

|m|
n (cosθ0). (21)

Then (20) is rewritten in a matrix form as

y
H(θ0, φ) = F (θ0)d(φ) (22)

where, F (θ0) = diag(f00,−f1(−1), f10, f11, · · · , fNN ) (23)

d(φ) = [1, ejφ, 1, e−jφ
, · · · , e−jNφ]T . (24)

The matrix d(φ) consists of only the exponent terms containing the

azimuth angle and, each submatrix corresponding to a particular or-

der follows the Vandermonde structure with common ratio as e−jφ.

From (19) and (22), the SH-MUSIC cost function can be written as

P
−1
SHM(φ) = d

H(φ)FH(θ0)S
NS

anm
[SNS

anm
]HF (θ0)d(φ)

= d
H(φ)FH(θ0)CF (θ0)d(φ) (25)

where C = S
NS

anm
[SNS

anm
]H .

By defining z = ejφ, the SH-MUSIC cost function now assumes a

polynomial form of degree 4N , given by

P
−1
SHM (φ) =

2N
∑

u=−2N

Cuz
u

(26)

where the coefficient Cu is obtained mathematically. The polyno-

mial has 4N roots. If z is a root of the polynomial then 1
z∗

will

also be the root. Hence, 2N roots are within the unit circle while the

other 2N roots are outside the unit circle. Of the 2N roots within the

unit circle, L roots close to the unit circle correspond to the DOAs.

This is illustrated in Figure 3(b) for a fourth order spherical micro-

phone array. The roots are plotted for two sources with co-elevation

angle 20◦ and azimuth angle (40◦,80◦) at SNR 15dB. All the roots

within and near the unit circle are shown in the figure. The DOA can

be estimated from the roots by using the relation, φ = ℑ(ln(z)),
where ℑ() is the imaginary part of ().

4. PERFORMANCE EVALUATION

Simulation experiments based on source localization were carried

out to evaluate the proposed SH-root-MUSIC method. Additionally,

experiments were performed on real signal acquired over spherical

microphone array to verify the algorithm. The experiments utilized

an Eigenmike
R© system [22] which is shown in Figure 4. It con-

sists of 32 microphones, embedded in rigid sphere of radius 4.2cm.

The order of the microphone array was taken to be 4. Root mean

square error (RMSE) and probability of resolution values were used

to evaluate the source localization performance of the proposed

method. The performance of the proposed method is compared to

SH-MUSIC and SH-MVDR.

Fig. 4. The Eigenmike R© setup in an anechoic chamber at IIT Kanpur

for acquiring a far-field source.

4.1. Simulation Experiments on DOA Estimation

The RMSE analysis and statistical analysis are presented here for

500 independent Monte Carlo trials. The additive noise is assumed

to be zero mean Gaussian distributed. Two sources with co-elevation

20◦ are considered.

4.1.1. RMSE Analysis

The experiments on source localization are presented as cumulative

RMSE (CRMSE) computed by

CRMSE =
1

2T

T
∑

t=1

2
∑

l=1

[(φl − φ̂
(t)
l )2], (27)

where t is the trial index while l denotes the source index. The

CRMSE values are plotted in Figure 5(a) with various SNR values
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Fig. 5. Cumulative RMSE for two sources with co-elevation 20◦, (a) azimuth (40◦, 80◦) at various SNRs. (b) azimuth of one source is fixed

at 40◦ and that of other source is varying in steps of 10◦. SNR= 20dB.

for two sources at (20◦, 40◦) and (20◦, 80◦). The CRMSEs values

are also plotted in Figure 5(b) for the case where azimuth of one

source is fixed as 40◦, while that of the other source varies at a step

size of 10◦. The SNR in this case is fixed at 20dB. It should be

noted that the proposed SH-root-MUSIC method performs reason-

ably better than SH-MUSIC and SH-MVDR.

4.1.2. Statistical Analysis

Statistical analysis of the proposed method is presented in terms of

probability of resolution for various SNRs. Two sources with DOAs

(20◦, 40◦) and (20◦, 80◦) are considered. The confidence interval

of ζ = 5◦ was used for calculating the probability over 500 inde-

pendent trials. The probability of resolution is given by

Pr =
1

2T

T
∑

t=1

2
∑

l=1

[Pr(|φl − φ̂
(t)
l | ≤ ζ)]

=
1

2T

T
∑

t=1

2
∑

l=1

[sgn(ζ − |φl − φ̂
(t)
l |)], (28)

where Pr(.) denotes the probability of an event, and sgn(x) is de-

fined as

sgn(x) =

{

1 if x ≥ 0
0 if x < 0.

(29)

The result is presented in Table 1 in which zero probability indicates

inability of the methods to resolve sources in the given confidence

interval. It is noted that the proposed method has higher probability

of resolution when compared to other methods at all SNR values. It

can also be concluded that a higher SNR is required for SH-MVDR

to resolve co-elevated sources.

Table 1. Probability of resolution performance of various methods.

Method
SNR

(5dB)

SNR

(10dB)

SNR

(15dB)

SNR

(20dB)

SNR

(25dB)

SH-RM 0.5131 0.7575 0.8386 0.8790 0.9032

SH-MUSIC 0 0.6198 0.8051 0.8689 0.9013

SH-MVDR 0 0 0 0.0046 0.3168

4.2. Real Data Experiments

The proposed algorithm is also verified by using real signal acquired

over spherical microphone array. The experimental set-up for ac-

quiring a source using Eigenmike
R© system is shown in Figure 4. A

smartphone speaker is utilized as an acoustic source. The source is

fixed at location (90◦, 90◦) in far-field region. A narrowband signal

with frequency of 1250Hz is played. The elevation of the source is

assumed to be known and the azimuth is estimated using the pro-

posed SH-root-MUSIC method.

All the 2N(= 8) roots within the unit circle are plotted in Figure

6. The root with argument close to 90◦ corresponds to the source and

is represented by red star. It is noted that noisy roots are also com-

peting in magnitude. The DOA estimation mismatch and multiple

competing roots are due to the reflection of sound from the tripods,

non-point sound source and microphone-source physical placement

errors.
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Fig. 6. Azimuth estimation of a source at (90◦, 90◦) using SH-root-

MUSIC. All roots within unit circle are shown for N = 4. The star

denotes the actual estimate.

5. CONCLUSION

In this paper, theory of root-MUSIC is established in spherical har-

monics domain. The theory is validated using simulation and real

data experiments. The SH-root-MUSIC method does not require any

search to estimate the DOAs. It provides DOA estimates as direct

roots of SH-MUSIC polynomial. The Vandermonde structure of ar-

ray manifold in spherical harmonics domain is shown using manifold

separation technique. The robustness of the method is illustrated by

using source localization experiments for various SNRs and angular

separations. The RMSE and probability of resolution values indicate

the relevance of the proposed method. Additionally, the method is

verified with real signal acquired over spherical microphone array.

Owing to its robustness and high resolution, a real time implemen-

tation for voiced-based camera steering in a meeting room can be

explored.
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