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ABSTRACT
This work presents a new array geometry, which is capable of
providing O(M2N2) degrees of freedom (DOF) using only
MN physical sensors via utilizing the second-order statistics
of the received data. This new array is composed of multi-
ple, identical minimum redundancy subarrays, whose posi-
tions follow a minimum redundancy configuration. Thus the
new array is a minimum redundancy array (MRA) of MRA
subarrays, and is termed as nested MRA. The sensor posi-
tions, aperture length, and the number of DOF of the new
array can be predicted if these parameters of MRA subarrays
are given. Numerical simulations demonstrate the superiori-
ties of the proposed array geometry in resolving more sources
than sensors and DOA estimation.

Index Terms— Sensor arrays, minimum redundancy ar-
ray, direction-of-arrival (DOA) estimation, co-array, nested
array.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is an important topic
in various applications [1–3], such as radar and sonar. It is
well known that the maximum number of sources that can be
resolved by an N -element uniform linear array (ULA) using
traditional DOA estimation methods, such as MUSIC [1] and
ESPRIT [2], is N −1. The underdetermined DOA estimation
problem, i.e. resolving more sources than the number of sen-
sors, has received considerable interest in recent years [4–6].
An effective approach to solve this problem is to increase the
number of degrees of freedom (DOF) under a virtual array
equivalence, for example [5]. This virtual array is constructed
by vectorizing the covariance matrix of the received data from
a properly designed non-uniform linear array. The minimum
redundancy array (MRA) [7] is such a linear array whose vir-
tual array is a filled ULA with maximum possible aperture
for a given number (N ) of physical sensors. Unfortunately,
there are no closed-form expressions for the sensor positions
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and achievable DOF as a function of N . Although MRAs for
N ≤ 17 sensors have been found by exhaustive search rou-
tines [8], there is no easy way to predict the design of larger
MRAs.

In this paper, we propose a new array geometry dubbed
nested MRA (NMRA) constituted of multiple, identical min-
imum redundancy subarrays. A key feature of the NMRA
is that the positions of the subarrays follow a minimum re-
dundancy configuration. Thus the NMRA is an MRA of
MRA subarrays. The sensor positions and the number of
DOF of an NMRA can be predicted when these parameters
of MRA subarrays are known. It follows that given a known
N -element MRA, it is possible to design a much larger N2-
element NMRA. By properly designing the spacing among
the subarrays, its virtual array can also be a filled ULA.

2. SIGNAL MODEL

Consider a K-element linear antenna array with sensors lo-
cated at p = [p1, p2, · · · , pK ]d, where pi (i = 1, 2, · · · ,K)
are integers, and d is the unit inter-element spacing, usually
equals to a half wavelength. Let Q uncorrelated narrowband
sources impinge on the array from directions {θq, q = 1, 2, · · · , Q}.
A steering vector is the array response to a unit strength
source at angle θ,

a(θ) =
[
ejκp1 sin θ, ejκp2 sin θ, · · · , ejκpK sin θ

]T
, (1)

where κ = 2πd/λ, and λ is the signal wavelength.
The data received by the array can be expressed as

x(t) = As(t) + n(t), t = 1, 2, · · · , T, (2)

where A = [a(θ1),a(θ2), · · · ,a(θQ)] is the array manifold
matrix and T is the number of snapshots. The source sig-
nals vector s(t) = [s1(t), s2(t), · · · , sQ(t)]T is assumed un-
known, but each element sq (t) follows the Gaussian distri-
bution CN (0, σ2

q ). The sources are assumed to be temporally
uncorrelated, so that the source autocorrelation matrix of s(t)
is diagonal. The components of the noise vector n(t) are as-
sumed to be independent and identically distributed (i.i.d.)
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additive white Gaussian noise with zero mean and variance
σ2
n, and are independent from the sources. Then the covari-

ance matrix of the received data x(t) can be represented as

Rxx = E[xxH ] = ARssA
H + σ2

nIK

=

Q∑
q=1

σ2
qa(θq)a

H(θq) + σ2
nIK ,

(3)

where Rss is aQ×Q diagonal matrix with diagonal elements
σ2
1 , σ

2
2 , · · · , σ2

Q and IK is a K ×K identity matrix. Vectoriz-
ing the matrix Rxx, we obtain the K2 × 1 vector

z = vec(Rxx) = Bc+ σ2
n1n, (4)

where B = [a∗(θ1)⊗ a(θ1), · · · ,a∗(θQ)⊗ a(θQ)]
T ∈

CK2×Q, ⊗ stands for the Kronecker product and 1n =[
eT1 , e

T
2 , · · · , eTK

]T
with eTi denoting a vector of all zeros,

except the i-th element which is equal to one. From (4) we
notice that the vector z is equivalent to the received data from
a virtual array with elements located at the position set

P = {(pi − pj)d, i, j = 1, 2, · · · ,K} . (5)

The vector c =
[
σ2
1 , σ

2
2 , · · · , σ2

Q

]T
is interpreted as an equiv-

alent source signal vector in the virtual array.
In the location set P of the virtual array, there are a total

of K2 elements, but some of them may be repeated (pairs of
pi, pj , i, j = 1, 2, · · · ,K, for which (pi − pj) are the same).
In this case, multiple virtual elements are associated with the
same virtual sensor location. We define the virtual array that
has sensors located at distinct elements of P, as a difference
co-array (DCA) of an original array [5]. The DCA is sym-
metric due to the fact that for any dij = (pi − pj)d in the
position set P in (5), −dij = (pj − pi)d is also in the set P.
The number of elements in the DCA is equal to the number
of DOF [5, 9], and it can be larger than the number of physi-
cal sensors, if the original array is properly designed. There-
fore, when performing DOA estimation, by using a part or the
whole of the DCA instead of the original array, it is possible
to resolve more sources than the number of physical sensors.
The NMRA is such an array that designed to provide higher
number of DOF than the number of physical sensors.

3. PROPOSED NESTED MINIMUM REDUNDANCY
ARRAY

3.1. Array geometry

The proposed array is composed of N identical subarrays.
Each subarray has M sensors with locations specified by the
vector

uM = [m1,m2, · · · ,mM ] d, (6)

where d is the minimum inter-element spacing,m1,m2, · · · ,mM

are integers and m1 = 0 without loss of generality. The sub-
array is an MRA and it is referred to as Subarray A. Assume
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Fig. 1. An example geometry of NMRA consists of 3 iden-
tical 4-element minimum redundancy subarrays, in which
D = 13d and only the nonnegative part of the DCA is given
since the symmetric property of the DCA.

now a second MRA of N elements, referred to as Subarray
B, where N may or may not be equal to M. Let the element
locations be

uN = [n1, n2, · · · , nN ]D, (7)

where n1, n2, · · · , nN are integers, n1 = 0, andD > mM ·d.
We now combine the two arrays by placing a Subarray A at
each element location of Subarray B. Then the positions of all
sensors form a cross summation set

S = {nj ·D +mi · d, 1 ≤ i ≤M, 1 ≤ j ≤ N} . (8)

Let the mathematical sign ⊕ denote the cross summation of
every element in uN and every element in uM . In this way
the sensor positions of the whole array may be expressed by
the vector

v = uN ⊕ uM . (9)

Note that the nesting method embodied in (9) between two
MRA’s is different from the nested array introduced in [5],
which is a union of two uniform linear subarrays.

Fig. 1 depicts an example that illustrates the proposed
array geometry. With M = 4 and N = 3, the NMRA has
MN = 12 sensors. Subarray A, Subarray B, NMRA and its
DCA are shown in Fig. 1, with D = 13d. We can see that the
aperture length of the NMRA is 45d, and the DCA is a filled
ULA with 2× 45 + 1 = 91 elements owing to the symmetric
property of the DCA. Hence the number of DOF associated
with the DCA of the NMRA is 91.

3.2. Properties of NMRA

Our design assumes the structures of Subarray A and Subar-
ray B to be known. We denote the parameters of the two sub-
arrays as follows. The aperture length of Subarray A with M
sensors is lA · d, the location set of the DCA associated with
Subarray A is DA and the number of DOF obtained from its
DCA is fA. The corresponding parameters for Subarray B
are lB ·D, DB and fB , respectively. Next we derive the prop-
erties of an NMRA using the parameters of its components,
Subarray A and Subarray B.

Proposition 1: The location set DV of the DCA associated
with an NMRA v can be obtained by the cross summation of
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location sets DB and DA, that is

DV = DB ⊕ DA. (10)

Proof. Substituting (8) into (5), we obtain

DV = {(nj ·D +mi · d)− (nj′ ·D +mi′ · d) ,
1 ≤ i, i′ ≤M, 1 ≤ j, j′ ≤ N}

= {(nj − nj′)D + (mi −mi′)d}.
(11)

where {(nj−nj′)D, 1 ≤ j, j′ ≤ N} and {(mi−mi′)d, 1 ≤
i, i′ ≤ M} are the location set forming the DCA of Subar-
ray B and Subarray A, respectively. The DCA of an MRA
is a filled ULA with symmetric property, and both Subarray
B and Subarray A are MRAs. Therefore DB and DA can be
expressed respectively as

DB = {nD = nLd, −lB ≤ n ≤ lB} ,
DA = {md, −lA ≤ m ≤ lA} .

(12)

where D = Ld, L is an integer.
Combining (11) and (12), we can obtain

DV = {(nL+m)d, −lB ≤ n ≤ lB ,−lA ≤ m ≤ lA}
= DB ⊕ DA.

(13)

Therefore DV can be calculated by the cross summation of
DB and DA .

This proposition reveals the relationship between the
DCA of an NMRA and DCAs of its components, Subarray
B and Subarray A. According to the proposition, the DCA
of a larger NMRA can be calculated using the DCAs of two
smaller arrays, which simplifies its computation method. This
proposition also inspires us to compute the aperture length
and the number of DOF of the NMRA using parameters
of Subarray A and Subarray B. The following proposition
specifies the NMRA.

Proposition 2: If D = fA · d, then the following proper-
ties hold for the NMRA v constructed by (9).

(a) The DCA of the NMRA is a filled ULA.
(b) The aperture length of the NMRA is lV · d =

(lB · fA + lA) d.
(c) The number of DOF obtained from the DCA of the

NMRA is fV = fA · fB .

Proof. From (12) we can obtain the relationship between the
number of DOF and the aperture length of Subarray B and
Subarray A respectively, that is fA = 2lA+1, fB = 2lB +1.
Next we prove Proposition 2 using the following three steps.

(a) There are 2lA + 1 (= fA) possible values for m in
(13). Thus the item nL + m are consecutive integers when
L = fA, which leads to the fact that the DCA of the NMRA
is a filled ULA if D = fA · d.

Table 1. DOF comparison of different array geometries
K 9 12 16 18 20 24 27 30 32 36

MRA 59 101 181 NA NA NA NA NA NA NA
Nested Array 49 83 143 179 219 311 391 479 543 683

CACIS 29 65 111 145 189 277 341 437 495 631
NMRA 49 91 169 189 247 351 413 513 611 767

(b) From (8) we know that the aperture length of an
NMRA is lV = lB ·D + lA · d = (lB · fA + lA) d.

(c) The DCA of an NMRA is a filled ULA within the
range of [−lV , lV ] d. Therefore the number of DOF is

fV = 2lV + 1 = 2fA · lB + 2lA + 1

= 2fA · lB + fA = fA · (2lB + 1)

= fA · fB .
(14)

Subarray A and Subarray B are both MRAs and their
numbers of DOF can be expressed respectively as [8]

fA =M2 −M + 1−MR,

fB = N2 −N + 1−NR,
(15)

where MR, NR are the number of redundancies for an M -
sensor MRA and an N -sensor MRA, respectively. Substitut-
ing (15) into (14), we can obtain

fV = fA · fB
=
(
M2 −M + 1−MR

) (
N2 −N + 1−NR

)
.

(16)

Thereby it can be concluded that the NMRA can provide
O(M2N2) DOF using only MN physical sensors.

3.3. DOF Comparison of different array geometries

In this section we compare the number of DOF provided by
our proposed NMRA with DOFs respectively provided by the
MRA, the recently proposed nested array [5] and the coprime
array with compressed inter-element spacing (CACIS) in [9].
These numbers of DOFs can be obtained using Proposition
2 and some relevant equations in [5, 9]. Let the total num-
ber of sensors K be some integers from 9 to 36. We get the
comparison results in Table 1. We observe that our proposed
NMRA has the highest DOF except the MRAs. However no
such MRA with more than 17 sensors has been given by ex-
isting references [8], and hence their parameters are shown as
’NA’ in the corresponding table.

4. DOA ESTIMATION METHODS

In this section we introduce the DOA estimation methods
applied to the DCA of an NMRA to resolve more sources
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than sensors. Recall the equivalent source signal vector c =[
σ2
1 , σ

2
2 , · · · , σ2

Q

]T
in (4). It is composed of the powers σ2

q

of the actual sources, and all elements in c are real values.
Therefore, these equivalent sources behave like fully coher-
ent sources in the DCA. Then the traditional subspace-based
DOA estimation algorithms, such as MUSIC and ESPRIT,
cannot be applied directly to the DCA to estimate DOAs.
Various algorithms, such as spatial smoothing (SS) MUSIC
[5, 9, 10], KR product based MUSIC [4], sparse signal re-
construction based methods [11, 12], have been proposed to
implement underdetermined DOA estimation.

Because the DCA generated from an NMRA is a filled
ULA, to which the SS-MUSIC algorithm can be directly ap-
plied to resolve more sources than sensors. The implementa-
tion method of SS-MUSIC algorithm can be found in [5, 9],
which is used as the performance metric in this paper. It
should be noted that the achievable DOF used for the SS-
MUSIC algorithm is only lV + 1 owing to the SS operation,
which is roughly equal to half of the number of distinct ele-
ments in the DCA.

5. NUMERICAL EXAMPLES

In this section we conduct experiments to evaluate the DOA
estimation performance using the SS-MUSIC algorithm de-
scribed in Section 4. First we show the ability of the pro-
posed array to resolve more sources than sensors. We use the
NMRA with 12 physical sensors illustrated in Fig. 1 for ex-
ample. The achievable DOF used for SS-MUSIC becomes
46 due to the fact that the SS operation will halve the num-
ber of DOF obtained from the DCA. We consider Q = 37
uncorrelated narrowband sources impinging on the array with
equal power, whose spatial frequencies sin θ are uniformly
distributed between -0.95 and 0.95. The number of source Q
is assumed to be known in our simulations. The MUSIC spec-
trum of the NMRA is shown in Fig. 2, where 1000 noise-free
snapshots are used. It shows that the NMRA can resolve all
the 37 sources correctly, which is much larger than the num-
ber of physical sensors (=12).

Next we use Monte Carlo simulations to analyze the aver-
age root-mean-square error (RMSE) of the estimated DOAs.
We use three array geometries (the Nested Array, CACIS and
NMRA) of 24 physical sensors and consider Q = 16 nar-
rowband uncorrelated sources uniformly distributed between
−70◦ and 70◦. Fig. 3 plots the RMSEs of three array ge-
ometries as a function of SNR with 100 snapshots, which is
obtained over 500 trials. It can be concluded that the DOA
estimation performance improves with the increase of SNR.
The CACIS has the highest RMSE because it has the short-
est aperture, least number of DOF and its DCA is not a filled
ULA. Our proposed NMRA achieves the best performances
with the lowest RMSE, which shows the superiority in DOA
estimation over other array geometries.
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Fig. 2. MUSIC spectrum as a function of sine of the DOA
(Sources numberQ = 37), using the NMRA with 12 physical
sensors. The vertical dash lines are the true positions of the
sources.
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Fig. 3. RMSE versus SNR (100 snapshots) for different ar-
rays with 24 physical sensors.

6. CONCLUSION

In this paper we proposed a new array geometry dubbed
nested MRA (NMRA), which can be easily constructed by
the cross summation of two MRA subarrays. It is possible
to predict the sensor positions and the number of DOF when
these parameters of the MRA subarrays are known. The
NMRA has a larger aperture as well as a higher number of
DOF than the nested array and the CACIS. We demonstrated
the superiorities of the proposed array in resolving more
sources than sensors and DOA estimation performance using
spatial smoothing based MUSIC algorithm. The shortcoming
of the proposed array geometry is that the new array relies on
the structures of known MRAs, and therefore not all NMRA
geometries with any number of sensors can be obtained.
However the new array geometry provides a closed-form so-
lution to generate a suboptimal co-array, and can easily obtain
a larger array employing the known MRA.
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