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ABSTRACT

MIMO radars use multiple waveforms in order to resolve more tar-
gets and achieve gains in target detection, parameter estimation and
recognition, for example. In this paper, we propose a method for op-
timizing multiple waveforms with low peak sidelobe and peak cross-
correlation levels for MIMO radar. The optimization method relaxes
the original quartic problem into a quadratic one and iterates the
relaxed problem to improve the solution. The numerical examples
demonstrate that good waveforms are obtained with the proposed
method.

Index Terms— MIMO radar, waveform design, optimization,
constant-modulus waveforms, relaxation methods

1. INTRODUCTION

Many MIMO radar detection and estimation methods rely on the
assumption that the waveforms transmitted simultaneously from dif-
ferent transmitters can be separated from each other at the receiver
end. Typically, it is therefore assumed that the used waveforms are
orthogonal [1, 2], in which case a bank of matched filters can be
used at receiver to identify the waveforms. However, waveforms that
would be orthogonal for all delays and Doppler shifts do not exist. It
is essential then to optimize the waveforms as well as possible.

When designing a set of waveforms for a MIMO radar, the cross-
correlation of the waveforms needs to be low as well in addition to
each waveform having small sidelobes. Synthesis of the a desired
ambiguity function was proposed in [3]. Simulated annealing and a
greedy algorithm were used for optimizing polyphase signals in [4].
Design of waveforms with a peak to average power ratio constraint
was studied in [5], whereas Unimodular code design has been pro-
posed in [6] and [7].

In this paper, we propose an iterative quadratic relaxation (IQR)
method for radar waveform optimization. This method relaxes the
original nonconvex problem into a convex one and solves it in a it-
erative fashion in order to improve the obtained waveforms. The
IQR method is compared with simulated annealing, greedy algo-
rithm, manifold optimization, and the Maximum Block Improve-
ment (MBI) method whose use in waveform optimization was pro-
posed in [11].

We formulate the problem of designing waveforms with mini-
mal peak cross-correlation and peak sidelobe level as a quartic min-
imax problem on an oblique manifold in Section 2. In Section 4, we
describe the proposed IQR method and briefly summarize the other
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methods that are used for comparison. Numerical examples of the
optimization results are given in Section 4, before the final conclu-
sions in Section 5.

2. PROBLEM FORMULATION

Multiple waveforms sets intended for radar use need to have as flat
cross-ambiguity function as possible. The cross-ambiguity function
is defined for narrowband waveforms as [8]

χij(τ, FD) =

∣∣∣∣ ∫ si(t)s
∗
j (t+ τ)ej2πFDtdt

∣∣∣∣2, (1)

where τ is the time delay and FD is the Doppler frequency of the
target. The narrowband condition may be stated as [9]

2vTB

c
� 1, (2)

where v is the velocity of the target, TB is the time–bandwidth prod-
uct of the waveform, and c is the propagation speed of the waveform.

If the narrowband assumption is not valid, the cross-ambiguity
function has to be written as [9]

χij(τ, FD) =

∣∣∣∣√γ ∫ si(t)s
∗
j (γt+ τ)ej2πFDtdt

∣∣∣∣2. (3)

The temporal compression factor γ, which describes how much the
waveform compresses or stretched in time because of the Doppler
shift, is given by

γ = 1 +
FD
Fc

, (4)

where Fc is the carrier frequency.
As most radars use digital signal processing, we are mainly in-

terested in sampled discrete-time signals, so we define the discrete-
time cross-ambiguity function as

χij(τ, FD, Ts) =
∣∣∣√γTs∑

k

si(kTs)s
∗
j (γkTs + τ)ej2πFDt

∣∣∣2,
(5)

where Ts is the sampling interval. Using the definition of Riemann
integral, we see that as Ts → 0, the sample cross-ambiguity func-
tion converges to the continuous one if the continuous-time cross-
ambiguity function is integrable.

In order to correctly separate the waveforms at the receivers, the
cross-ambiguity function of the waveforms should be as low as pos-
sible. Also the self-ambiguity function should ideally be flat beyond
the main lobe, and there should not be significant sidelobes.

3036978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



The peak cross-correlation (PCC) can be used as a measure of
the maximum of the cross-ambiguity function. The normalized PCC
is defined as

PCCk(Ts) = sup
i,τ,F

χki(τ, F, Ts)

χkk(0, 0, Ts)
. (6)

For the self-ambiguity function, we define the normalized peak side-
lobe (PSL) as

PSLk(Ts) = sup
(τ,F )/∈Mk

χkk(τ, F, Ts)

χkk(0, 0, Ts)
, (7)

where the setMk is defined as the set of delay τ and Doppler fre-
quency F values that encompass the main peak of the waveform k.
An example of this set could be an ellipsoidMk = {(τ, F )|(τ/τ0)2+
(F/F0)

2 ≤ 1}, where τ0 and F0 are the main lobe half-widths in
delay and Doppler frequency, respectively. Typically, F and τ are
continuous but can be discretized in suitable conditions discussed
below.

In the following, we will consider waveforms that are linearly
modulated trains of rectangular pulses. Many commonly used wave-
forms employed in pulse compression in radars and in the digital
modulation of communication systems are this type of signals, in-
cluding binary, QAM, and polyphase signals. However, frequency
modulation does not fall into this category.

Let the vector sk contain the samples of the kth baseband wave-
form sk(t), i.e. (sk)n = sk(nTs), where Ts is the sampling in-
terval. The dimensions of sk depend on the number of symbols and
sampling rate, and at critical sampling rate, the sk would be aNp×1
vector, where Np is the number of pulses. We define the delay and
Doppler matrixD(τ, FD, Ts) as

(D(τ, FD, Ts))n,m = γT 2
s e
j2πFDnTsδh(n),m, (8)

where

h(n) =

⌊
nTs + τ

γTs

⌋
(9)

and γ is given by (4).
Using the delay and Doppler matrix, the discrete-time cross-

ambiguity function can then be written as

χij(τ, FD, Ts) =

∣∣∣∣sHi D(τ, FD, Ts)sj

∣∣∣∣2. (10)

In order to simplify the waveform optimization problem, it is
assumed next that the narrowband assumption holds, and that the
waveform is sampled so that the symbol duration is an integer multi-
ple of sampling interval Ts. Consequently, for two values of delay τ1
and τ2 such that |τ1 − τ2| ≤ Ts, obviously χij(τ1, f) = χij(τ2, f)
as the sampled signals differ only by a phase shift. Therefore, we
need only to consider delays that are integer multiples of the sam-
pling interval.

With these assumptions and critical sampling, the delay and Doppler
matrix in (11) becomes Np ×Np matrix

(11)
(Dk,f )n,m = (D(kTs, FD, Ts))n,m

= Tse
j2πFDnTsδn+k,m

= Tse
j2πfnδn+k,m,

where f = FDTs is the normalized Doppler frequency.

Furthermore, we assume without loss of generality that each
waveform is normalized such that

χkk(0, 0, Ts) = ‖sk‖2 = 1. (12)

The PSL and PCC of the ith waveform can now be expressed as

PSLi = sup
k,f

∣∣∣∣sHi Dk,fsi

∣∣∣∣2, |f | ≥ δk0f0 (13)

and

PCCi = sup
j,k,f

∣∣∣∣sHi Dk,fsj

∣∣∣∣2, (14)

where f0 is the half-width of the main peak in normalized Doppler
frequency.

The goal of minimizing the maximum PSL and PCC of the wave-
form set can now be formulated as an optimization problem

minimize max
i,j,k,f

∣∣∣∣sHi Dk,fsj

∣∣∣∣2 |f | ≥ δijδk0f0 (15a)

s.t. ‖si‖ = 1, ∀i. (15b)

The function
∣∣∣∣sHi Dk,fsj

∣∣∣∣2 is a continuous, multivariate polynomial

and k ∈ Z whereas f ∈ [−1/2, 1/2] due to aliasing. Consequently,
the maximum exists. By discretizing the normalized Doppler fre-
quency, one obtains a minimax optimization problem of multivariate
quartic polynomials on oblique manifold.

It is often necessary to constrain the peak-to-average ratio (PAR)
of power for each waveform in order to avoid amplifier non-idealities
in the front-end. For the linearly modulated sequences of rectangular
pulses, the PAR of the ith waveform is equal to

PARi =
maxk|(si)k|2

1
Np
‖si‖2

, (16)

where Np is the number of pulses. If the maximum allowed PAR is
equal to PARmax, the constraint on the modulation symbols (si)k
can be written as

|(si)k|2 ≤
PARmax

Np
∀k, (17)

where the normalization ‖si‖ = 1 is assumed.

3. OPTIMIZATION METHODS

It was shown in the previous section that the waveform optimiza-
tion for MIMO radars can be written as a quartic minimization on an
oblique manifold. Given the minimax nature of the problem, directly
applying manifold optimization methods to this problem is unlikely
to yield satisfactory solutions due to possibly a large number of lo-
cal minima. We propose iterative quadratic relaxation (IQR) method
for the waveform optimization and compare it with some other sug-
gested methods in the literature.
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3.1. Iterative Quadratic Relaxation

The iterative quadratic relaxation (IQR) algorithm is based on ap-
proximating the quartic problem with a quadratic one and solving
the approximation iteratively. At each iteration, a new waveform set
is obtained from the previous set by solving a quadratic problem.
The new waveforms are obtained from the current waveforms s(m)

i ,
where m denotes the iteration, by solving an optimization problem

min max
j,k,f

∣∣∣∣xHi Dk,fs
(m)
j

∣∣∣∣2, |f | ≥ δk0δijf0 (18a)

s.t. xHi s
(m)
i = 1 (18b)

for eachxi. This problem is quadratically constrained problem (QCP)
that is convex and solvable in polynomial time. The updated wave-
form s(m+1)

i is obtained from the solution by normalization, i.e.

s
(m+1)
i =

xi
‖xi‖

. (19)

The optimization decouples into separate problem for each wave-
form. However, in order to avoid unwanted increase in the cross-
correlation, the waveforms need to be updated one by one in a serial
fashion. When no significant improvement is achieved with further
iterations, it is possible to improve the solution further by switching
back to the original problem (15) and using a manifold optimization
method or a greedy algorithm.

The optimization problem (18) can be geometrically interpreted
as minimizing the objective on a hyperplane that is a tangent plane
to the surface of the unit complex hypersphere ‖si‖ = 1 at the point
s
(m)
i . After the optimal point on this tangent hyperplane has been

found, it has to be projected on the unit complex hypersphere to
satisfy the constraint (18b) for the next iteration.

For optimization with a PAR constraint, an additional constraints
are needed. These constraint is given by

Re
[
(xi)

∗
k(s

(m)
i )k

]
=

PARmax

Np
∀k. (20)

Naturally, this constraint does not guarantee that the PAR of the solu-
tion would be less or equal to PARmax. In order to obtain a solution
satisfying the PAR constraint, we first define a vector-valued func-
tion yi(p) whose elements are given by

(yi(p))k =
(xi)k
|(xi)k|p

. (21)

It is clear then that the PAR of yi(p) is decreasing and equal to one
for p = 1, but equal to the PAR of xi for p = 0. Thus, suitable value
for p is easily obtained from the following minimization

min p (22a)

s.t.
maxk|(yi(p))k|2

1
Np
‖yi(p)‖2

≤ PARmax (22b)

0 ≤ p ≤ 1. (22c)

The updated waveform is then given by

s
(m+1)
j =

yi(p)

‖yi(p)‖
(23)

as scaling does not change the PAR value.

3.2. Maximum Block Improvement

Maximum Block Improvement (MBI) is an algorithm for real-valued
multivariate polynomial optimization. It works by increasing the
number of variables so that a linear relaxation of the multivariate
polynomial is achieved [10]. In many cases, this linearized prob-
lem can be easily solved. At each iteration, the set of variables that
improves the objective function most is updated.

Solving the waveform optimization problem using Maximum
Block Improvement (MBI) algorithm was proposed in [11]. The
linearization of the waveform optimization problem can be reformu-
lated as

min max
i,j,k,f

s̃Ti,1Ak,f s̃j,2s̃
T
i,3Ak,f s̃j,4

+ s̃Ti,1Bk,f s̃j,2s̃
T
i,3Bk,f s̃j,4

s.t. |f | ≥ δk0δijf0, ‖si, j‖ = 1 ∀i, j

(24)

At each iteration, one set of variables si,j is optimized while the
others are kept constant. However, due to the minimax nature of the
optimization, this is not a convex problem.

3.3. Simulated Annealing

Simulated annealing (SA) may be used for waveform optimization.
It is a heuristic search method for finding an approximation of the
global optimum of a multivariate or combinatorial function [12]. It
was used for multiple waveform optimization in [4]. Similar heuris-
tic approaches include genetic algorithm used in [13], tabu search
used in [14], and the cross-entropy method in used [15], for exam-
ple. All of these methods are stochastic search algorithms in which
the generation of solution candidates is randomized and worse solu-
tions can be accepted in order to avoid local optima.

An essential part of the simulated annealing is the method form-
ing the solution candidates. Here, we add a small complex Gaussian
perturbation to the waveforms at each update, i.e. xi = s

(m)
i + εi,

where εi ∼ CN (0, σ2
εI). Equations (21), (22), and (23) can then be

used to obtain a candidate solution that satisfies the PAR constraint
and the norm constraint.

In order to achieve the best approximate solution, we apply a
modest reheating at the best point of the initial optimization for pos-
sibility to improve the solution further to a better local optimum
nearby. This approach differs from the greedy optimization approach
used in [4].

3.4. Greedy Optimization

In greedy waveform optimization, a single symbol in the waveform
set is modified until a minimum of the objective function, in this
case (15a), has been found. Each symbol is modified in turn until
no improvement can be made by changing any single symbol. This
type of optimization was used in [4] to improve the solution found
using the simulated annealing.

The PAR constraint can be easily accommodated into the greedy
optimization by enforcing (17) for the symbol being modified. The
other symbols can then be scaled to meet the norm constraint in
(15b).

4. NUMERICAL EXAMPLES

Numerical examples comparing the waveform optimization meth-
ods described in the previous section are provided next. In order to
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Table 1. PSL and PCC of the optimized waveform sets

Method Point 1 Point 2 Point 3 Point 4 Point 5
SA -9.90 -9.94 -9.92 -9.91 -9.66
SA+Greedy -9.90 -9.96 -9.93 -9.92 -9.68
Manifold -9.06 -9.38 -8.88 -9.19 -9.31
Manifold+Greedy -9.08 -9.43 -9.00 -9.24 -9.31
IQR -10.11 -10.00 -10.08 -10.18 -9.97
IQR+Greedy -10.11 -10.00 -10.08 -10.18 -9.97
Greedy -8.05 -7.29 -7.31 -7.58 -8.24
MBI -6.26 -6.92 -6.16 -6.35 -7.20

Comparison of PSL and PCC levels of the optimized 4 × 40
waveform sets without a PAR constraint. IQR algorithm pro-
vides the best results.

compare the waveform optimization methods, we optimized a wave-
form set consisting of four polyphase waveforms with 40 symbols
in each. The objective was to obtain waveforms with lowest possi-
ble peak sidelobe and peak cross-correlation levels. The optimiza-
tion was done starting from five different initial points either with no
PAR constraint or PAR constrained to 1.5 or to 1. The last case cor-
responds constant-modulus waveforms. In addition to the optimiza-
tion methods of the previous section, we used also a quasi-Newton
method on the manifold. Furthermore, the greedy algorithm was
used in conjunction with the other algorithms to see if the waveforms
can be improved the further.

The results of the waveform optimization without a PAR con-
straint are shown in Table 1. It is immediately clear that MBI per-
forms the worst in comparison to the other methods considered. The
greedy algorithm by itself fares slightly better than the MBI, but it is
still behind the other algorithms. The algorithm providing the wave-
forms with the lowest PSL and PCC is the IQR in this case. How-
ever, the computational complexity of the IQR is correspondingly
high. The benefit of using the greedy algorithm after the optimiza-
tion with another method is marginal at best in this case.

Table 2 shows the optimization results with PAR constrained to
be 1.5 at most. The results in this case are similar as without the
PAR constraint IQR being the best followed by SA and then the
quasi-Newton on the manifold. The differences between these meth-
ods are small, while the MBI and the greedy algorithm are clearly
worse. Furthermore, the improvement achieved by using after the
other methods is insignificant. The results for constant-modulus
(PAR equal to one) waveforms are shown in Table 3. The results
follow the same pattern as in the other cases, but the differences in
the achieved PSL and PCC are smaller between the algorithms.

Table 4 summarizes the results by averaging the PSL and PCC
level obtained using 20 different initial points for the three aforemen-
tioned cases. It can be seen that the impact of the PAR constraint on
the PSL and PCC levels is small. Also, using the greedy algorithm
to improve the solutions obtained with the other optimization meth-
ods does not provide a significant benefit. It should be noted that as
the PAR constraint has only a small impact on the achieved PSL and
PCC level. As low PAR simplifies the transmitter design, it would
thus be sensible to use low-PAR or constant-modulus waveforms.

5. CONCLUSIONS

In this paper, we formulated the MIMO radar waveform optimization
problem as a quartic minimax problem on an oblique manifold and
proposed an iterative quadratic relaxation (IQR) method for solving

Table 2. PSL and PCC of the optimized waveform sets with PAR
constraint

Method Point 1 Point 2 Point 3 Point 4 Point 5
SA -9.63 -9.54 -9.74 -9.61 -9.62
SA+Greedy -9.64 -9.54 -9.76 -9.62 -9.62
Manifold -9.06 -7.84 -9.34 -9.12 -8.97
Manifold+Greedy -9.08 -8.80 -9.36 -9.23 -9.03
IQR -9.70 -9.72 -9.76 -9.70 -9.67
IQR+Greedy -9.70 -9.72 -9.77 -9.70 -9.68
Greedy -8.23 -6.92 -8.46 -8.29 -8.09
MBI -6.88 -6.49 -6.07 -6.82 -6.59

Comparison of PSL and PCC levels of the optimized 4 × 40
waveform sets with the PAR constrained to be equal to or less
than 1.5. IQR algorithm provides the best results, but the dif-
ference to the SA which is small.

Table 3. PSL and PCC of the optimized constant-modulus wave-
form sets

Method Point 1 Point 2 Point 3 Point 4 Point 5
SA -9.73 -9.82 -9.63 -9.65 -9.78
SA+Greedy -9.73 -9.82 -9.63 -9.65 -9.78
Manifold -8.60 -8.69 -8.59 -8.82 -8.92
Manifold+Greedy -8.62 -8.73 -8.72 -8.82 -8.92
IQR -9.97 -9.73 -9.81 -10.07 -9.92
IQR+Greedy -9.97 -9.82 -9.81 -10.07 -9.92
Greedy -7.80 -7.37 -7.46 -7.76 -7.51
MBI -6.88 -7.53 -6.07 -7.45 -7.46

Comparison of PSL and PCC levels of the optimized 4 × 40
constant-modulus waveform sets with unit PAR. IQR algorithm
provides the best results in all but one of the starting points.

Table 4. Average PSL and PCC

Method Free PAR PAR 1.5 PAR 1
SA -9.84 -9.62 -9.64
SA+Greedy -9.85 -9.63 -9.64
Manifold -9.13 -8.91 -8.61
Manifold+Greedy -9.21 -9.08 -8.71
IQR -10.07 -9.72 -9.83
IQR+Greedy -10.07 -9.72 -9.84
Greedy -7.78 -7.69 -7.60
MBI -6.61 -6.71 -6.99

Maximum of PSL and PCC averaged over random
20 initializations for the 4× 40 waveform sets. PAR
constraint increases the PSL and PCC only slightly.

it. Optimizing waveforms with a constraint on the peak to average
ratio of power, including constant-modulus waveforms, can also be
done using the proposed method.

In the numerical examples, the IQR method was found out to be
superior both compared to maximum block improvement linearizing
the problem and quasi-Newton method on the manifold. The IQR
method also typically reached achieved lower PSL and PCC levels
compared to simulated annealing.

Comparison of the computational complexity of the optimiza-
tion methods was not included. This should be done in a subsequent
study.
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