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ABSTRACT 
 
Traditional methods of target parameter estimation in 
MIMO radar are carried out under the assumption that the 
number of observations is much larger than the number of 
array elements. However, their estimation performance will 
decline for the MIMO radar with large arrays and 
insufficient observations. In this paper, we investigate the 
situation in bistatic MIMO radar that the product of the 
numbers of the transmit and receive elements and the 
number of observations grow at the same rate. We propose a 
robust method for joint direction-of-departure (DOD) and 
direction-of-arrival (DOA) estimation in non-Gaussian 
noise environment. The method uses robust M-estimator to 
form an estimate of the covariance matrix, and then applies 
random matrix theory (RMT) and polynomial rooting 
algorithm to receive accurate DOD and DOA estimates for 
large scale MIMO radar. The simulation results demonstrate 
the robustness and improvement in accuracy.  
 

Index Terms—MIMO radar, random matrix, non-
Gaussian noise, DOA, DOD, robust estimator 
 

1. INTRODUCTION 
 
Recently, joint estimation of direction of departure (DOD) 
and direction of arrival (DOA) in bistatic multiple-input 
multiple-output (MIMO) radar [1-3] has drawn considerable 
attention for target localization. Several two-dimensional 
(2D) spatial spectrum estimation approaches have been  
developed [4-9]. In [4],  a 2D-Capon  method for DOD and 
DOA estimation has been proposed. In [5], a 2D-MUSIC 
method has been presented and then a reduced-dimension 
MUSIC method has been given to reduce its amount of 
calculation. However, searching through all the 2D space is 
needed in these methods. In [6][7], the ESPRIT-like 
methods have been developed exploiting the rotation 
invariant structure of the transmit and receive arrays, which 
can avoid peak searching but need pairing between the 
DOAs and DODs of multiple targets. Furthermore, the 
combined ESPRIT-MUSIC method [8] with polynomial 
root finding algorithm [9] has been presented to decompose 
the 2D angle estimation into double one-dimensional (1D) 

angle estimation, which allows an automatical pairing of 
DOAs and DODs, and avoids an exhaustive peak searching.  

Despite the fact that the currently proposed methods 
have improved the performance of DOD and DOA 
estimation, they work well under the assumption that the 
number of observations is sufficient and much larger than 
the number of array elements. Commonly, we observe from 
the signal model of bistatic MIMO radar that, the number of 
observations is actually not so large compared to the 
product of the numbers of the transmit and receive elements, 
i.e. they both grow at the same rate, which will lead to the 
performance declination for traditional estimation methods. 
In addition, the observation noise of MIMO radar often 
exhibits non-Gaussian characteristics, e.g., heavy-tailed 
distribution, which will lead to the lack of robustness for 
traditional methods, since they only work well under 
Gaussian environment.  

The work developed by Mestre et al [10] has considered 
large array with random matrix theory (RMT) and presented 
a DOA estimation algorithm with G-estimator. Following 
this, the work by Romain Couillet  et al [11] has proposed a 
robust G-MUSIC algorithm for DOA estimation. The 
algorithm starts with the works from Huber [12] on robust 
M-estimation, and uses the robust estimator of the 
covariance matrix instead of the sample covariance matrix 
(SCM), which has shown robustness in non-Gaussian noise.  

In this paper, we apply the ideas of [10] and [11] in the 
bistatic MIMO radar with large scale arrays in which the 
product of the numbers of the transmit and receiver 
elements and the number of  observations grow at the same 
rate. We propose a robust method for joint DOD and DOA 
estimation in non-Gaussian noise environment. In the 
proposed method, the robust M-estimator is used to form an 
estimate of the covariance matrix, and then the RMT and 
polynomial rooting algorithm are exploited to estimate 
DOD and DOA for large scale MIMO radar. It brings 
automatical pairing and avoids exhaustive 2D peak 
searching. Also, it shows robustness when multiple targets 
own identical DOA but different DODs.  
 
2. SIGNAL MODEL FOR BISTATIC MIMO RADAR  

 
As illustrated in Fig. 1, we consider a bistatic MIMO radar 
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system equipped with a uniform linear transmit array with 
M elements and a uniform linear receive array with N 
elements. 

td and 
rd  respectively denote the inter-element 

spacing at the transmitter and receiver, which are no more 
than half a wavelength λ . The range of targets is assumed 
to be much larger than the apertures of the transmit and 
receive arrays. Assume that the M elements of the transmit 
array simultaneously send M orthogonal waveforms. The 
signals are reflected by P targets. For the pth target, 

1, 2, ,p P= " , its angles, say, DOD and DOA, are 
denoted by 

pθ  and 
pφ . 

In the lth indepandent observation, 1, 2 , ,l L= " , the 
return signals at the receiver array form a matrix denoted as 
                       ( ) ( ) T ( )( ) ( )l l l

r tφ θ= +X A B A S Z                     (1) 

where M K×∈S ^  denotes the transmitted baseband coded 
waveform matrix, 

T
1[ , , ]M=S s s" , where 1K

m
×∈s ^  is the 

signal vector of the mth transmit element with length K. Let 
HSS = I for M orthogonal transmitted waveforms. 

( )l P P×∈B ^  denotes the reflected target signal matrix, ( ) ( ) ( )
1{ , , }l l l

pdiag β β=B " , where ( )l
pβ  is complex amplitudes 

having time-varying characteristics in each observation, 
which is proportional to the radar cross sections (RCSs) of 
the pth target. ( )l N K×∈^Z denotes the noise matrix. 

( ) M P
t θ ×∈A ^  and ( ) N P

r φ ×∈A ^  respectively denote the 
transmitter and receiver steering matrices,  

1( ) [ ( ), , ( )]t t t Pθ θ θ=A a a" , where 1( ) M
t pθ ×∈a ^  is the pth 

steering vector of the transmit array, given by 
               2 sin( )/ 2 ( 1) sin( )/ T( ) [1, , , ]t p t pj d j M d

t p e eπ θ λ π θ λθ − − −=a "    (2) 

and 1( ) [ ( ), , ( )]r r r Pφ φ φ=A a a" , where  1( ) N
r pφ ×∈a ^  denotes 

the pth steering vectors of the receive array, written as  
 2 sin( )/ 2 ( 1) sin( )/ T( ) [1, , , ]r p r pj d j N d

r p e eπ φ λ π φ λφ − − −=a "    (3) 

We use HS as the matched filter matrix. Thus, the output of 
the matched filter ( )l N M×∈X� ^  can be written as 
                 ( ) ( ) H ( ) T ( ) H= ( ) ( )l l l l

r tφ θ= +X X S A B A Z S�           (4) 

By vectorizing the matrix ( )lX� , i.e. ( ) ( )( )l lvec=y X�  , the 
obtained vector ( ) 1l MN ×∈y ^ can be written as 

                          )()()( ),( lll nbAy += φθ                        (5) 

with ( ) ( ) ( ) T
1[ , , ]l l l

Pβ β=b "  being the target amplitude vector. 

( , ) MN Pθ φ ×∈A ^ denotes the total manifold matrix with 
respect to both the transmit and receive arrays,  then 
         

1 1( , ) ( ) ( )=[ ( , ), , ( , )]t r P Pθ φ θ φ θ φ θ φ= ◊ "A A A a a     (6) 

where ◊  is the Khatri-Rao product. ( , ) ( ) ( )p p t p r pθ φ θ φ= ⊗a a a  ,
 

where
 ⊗  is the Kronecker product. We form a matrix  

M N L×∈Y ^  by composing L  observations from (5), 
NbAY += ),( φθ                          (7) 

where (1) ( )[ , , ]L= "Y y y , (1) ( )[ , , ]L=b b b" , (1) ( )[ , , ]L=N n n" .  
From the signal model of bistatic MIMO radar in (7), we 

observe that Y can be regarded as a large dimensional 
random matrix when MN L→ ∞ → ∞， , and /MN L c=  
with c being a constant. Our object is to investigate a robust 
joint estimation problem in non-Gaussian noise background 
when L  is not so large compared to MN . This condition 
often holds in MIMO radar with large scale arrays.  

 
3. RANDOM MATRIX-BASED METHOD FOR DOD 

AND DOA ESTIMATION IN NON-GAUSSIAN NOISE 
 
Subspace-based DOD and DOA estimation methods are 
based on the empirical covariance matrix of observation 
signals. For our MIMO radar model, we assume [ ] 0E =Y , 

[ ] MNE =HYY C , where 
MNC  is an MN MN×  empirical 

covariance matrix of Y .  In traditional methods with large 
L, the SCM is the maximum likelihood (ML) approximation 
of MNC  for Y Gaussian. However, this may perform very 
poorly when Y is not Gaussian. In this paper, we use a 
robust estimator of MNC  as the substitution of the SCM 
estimator to solve the non-Gaussian problem based on 
Huber’ method [12] on robust M-estimation. Here the 
robust estimator ˆ

MNC  is  iteratively calculated by  

 ( ) H 1 ( ) ( ) ( ) H

1

1 1ˆ ˆ
L

l l l l
MN MN

l

u
L MN

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑C y C y y y（ ） （ ）      (8) 

where ( )u ⋅  is a non-negative function with specific 
properties [11]. For any such ( )u ⋅ , ˆ

MNC  is a consistent 
estimate of 

MNC  for MN fixed and L → ∞ , which is 
particularly appropriate as it is the ML estimate of 

MNC  for 
specific distributions of Y  and some specific choices of 

( )u ⋅ , such as the family of elliptical distributions [13]. The 
robust estimator is also used to cope with distributions of Y  
with heavy tails [14] such as the K-distribution often 
encountered in adaptive radar processing with impulsive 
clutter [11][15].  

Considering the situation that L  is not so large 
compared to MN ,  we use the RMT to solve the inadequacy 
of observations. The method is based on the idea of G-
estimator developed in [10]. Denote ( )MN MN P

n
× −∈E ^  the 

noise subspace matrix containing in columns the 

Pθ Pϕ

 
Fig. 1.  Bistatic MIMO radar configuration of M transmit array elements 
and N receive array elements. 
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eigenvectors of MNC . Also, denote ˆme  the mth eigenvector 

of ˆ
MNC  with respect to the eigenvalue ˆ ˆ ˆ( )m m MNλ λ= C , 

1, 2, ,m MN= " , where
1 2
ˆ ˆ ˆ

MNλ λ λ≤ ≤ ≤" are the ordered 
eigenvalues. Then, for MN L→ ∞ → ∞， , /MN L c= ,  and 
P  fixed, we have 
                            . .ˆ( , ) ( , ) 0a sγ θ ϕ γ θ ϕ− ⎯⎯→                     (9) 

where 
 ( , ) ( , ) ( , )n nγ θ ϕ θ ϕ θ ϕ= H Ha E E a     (10) 

 
1

ˆ( , ) ( ) ( , ) ( , )
MN

m m
m

w mγ θ ϕ θ ϕ θ ϕ
=

= ∑ H Ha e e a     (11) 

with 

1

1

ˆ ˆ
1 ,ˆ ˆ ˆ ˆ

( )
ˆ ˆ

,ˆ ˆ ˆ ˆ

MN
i i

i MN P m i m i

MN P
i i

i m i m i

m MN P

w m

m MN P

λ μ
λ λ λ μ

λ μ
λ λ λ μ

= − +

−

=

⎧ ⎛ ⎞
+ − ≤ −⎪ ⎜ ⎟⎜ ⎟− −⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪− − > −⎜ ⎟⎪ ⎜ ⎟− −⎝ ⎠⎩

∑

∑

    (12) 

where 
1 2ˆ ˆ ˆMNμ μ μ≤ ≤ ≤"  are the eigenvalues of 
1ˆ ˆ ˆ( )diag
L

−
T

λ λ λ ,  with T
1 2

ˆ ˆ ˆ ˆ( , , , )MNλ λ λ=λ " . 

Simlarly to conventional MUSIC algorithm exploiting 
the orthogonality of the steering vector matrix and the noise 
subspace, we estimate ( , )θ φ  by constructing the following 
peak searching function: 
 

H H

1

1( , )
ˆ ˆ( , ) ( ) ( , )

MN

m m
m

P
w m

θ φ
θ φ θ φ

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑a e e a

 (13)  

To avoid searching through all the 2D space, we use the 
polynomial root algorithm. Denote - 2 sin( )/z rj d

r e π φ λ= , 
2 sin( )/z tj d

t e π θ λ−= and rewrite the steering vectors as 

  2 1( ) 1, , , ,
TN

r r r r rz z z z −⎡ ⎤= ⎣ ⎦a …      (14)
 

                          2 1( ) 1, , , ,
TM

t t t t tz z z z −⎡ ⎤= ⎣ ⎦a …      (15) 

Since ( , ) ( ) ( )t rθ φ θ φ= ⊗a a a , we have 

  
2 1( , ) ( ) , ( ) , ( ) , , ( )

TT T T M T
r t r r t r r t r r t r rz z z z z z z z z−⎡ ⎤=⎣ ⎦…a a a a a

   
(16) 

From (13) and (16),  

 H

m 1

ˆ ˆ( , ) ( ) ( , ) 0
MN

H
r t m m r tz z w m z z

=

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑a e e a     (17) 

Let 
 H

m 1

ˆ ˆ( )
M N

n m mw m
=

= ∑Π e e     (18) 

Then 
 1 1( , ) ( , ) 0T

r t n r tz z z z− − =a Π a           (19) 

Divide MN MN
n

×∈^Π   into 

 
11 1

, 1, ,

1

,
M

N N
n ij i j M

M MM

C ×
=

⎡ ⎤
⎢ ⎥=    ∈⎢ ⎥
⎢ ⎥⎣ ⎦

Π Π
Π Π

Π Π
…

"
# % #

…

   (20) 

Rewrite (19) as  

 1

, 1
( ) ( ) 0

M
T j i

r r t ij r r
i j

z z z− −

=

⎡ ⎤
=⎢ ⎥

⎣ ⎦
∑a Π a     (21) 

By finding the roots of the polynomial function in (21), the 
estimation of θ  and φ  can be obtained.  

For DOD estimation,  tz  satisfies [9] 

 
, 1

( ) det 0
M

j i
t t ij

j i
D z z −

=

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
∑ Π

 

    (22) 

where det (.) denotes the determinant of a matrix.  Therefore, 
the DOD can be estimated by obtaining the P roots inside 
and closest to the unitary circle of the polynomial in (22), i.e.

  
( )ˆ arcsin arg( )

2
p

p t
t

z
d

λθ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

�

               

 (23) 

where ( )p
tz�  is the pth roots of  the equation in (22). 

For DOA estimation, substituting ( )p
tz�  into (21), we 

have  

1 ( )

, 1
( ) ( ) ( ) 0

M
T p j i

r r t ij r r
j i

z z z− −

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ �a Π a    (24)

 

Using again the root finding technique respectively for 
1, ,p P= … , the DOA can be determined by calculating the 

root closest to the unit circle of the obtained polynomial in 
(24), i.e. 

 ( )ˆ arcsin arg( )
2

p
p r

r

z
d

λφ
π

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

�

         
 (25) 

where ( )z p
r
�

 is the root of the equation in (24) with respect to 
the pth target. 
 

4. SIMULATION RESULTS 
 
In this section, we present the simulation results to illustrate 
the performance of the proposed algorithms. The bistatic 
MIMO radar is composed of M=8 and N=8 transmit and 
receive elements, respectively. All the elements are spaced 
by a half wavelength. The function ( )u x  in (8) is given as 

( ) (1 ) / ( )u x v x v= + + with 0.5v = . The snapshots is L=80. 
We observe that MN=64 is close to L. The Monte-Carlo 
iterations is 200. Assume that the noise matrix N  is 
independent zero-mean unit variance entries with Student-t 
distribution [16] with  degrees of freedom 2.5, and 
SNR=10dB. We show the robust DOD and DOA estimation 
results in non-Gaussian noise environment.  

Example 1: Firstly, we assume that N  is independent 
zero-mean unit variance entries with Gaussian distribution. 
Here, P=4 targets are located at the angles ( , )θ φ =  
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(10 ,20 ), (50 ,30 )D D D D , (40 ,50 ), (80 ,70 )D D D D . The result of the 
proposed algorithm in Gaussian noise environment is shown 
in Fig. 2. Secondly, assume that N  is independent zero-
mean unit variance entries with Student-t distribution. Four 
targets are located at , (10 ,20 ),(70 ,40 ),(80 ,60 ),(50 ,80 )θ ϕ = D D D D D D D D（ ） . 
The result of the proposed algorithm in non-Gaussian  noise 
is shown in Fig. 3. 

 

 

 
From Fig. 2 and Fig. 3 we can observe that the target 

angles are well localized and they are automatically paired. 
The proposed DOD and DOA estimation algorithm is robust 

and suitable for both Gaussion and non-Gaussion noise 
environment. Also, the method is applicable in inadequate 
snapshots L=80. 

Example 2: The example investigates the effectiveness 
of the proposed method when multiple targets have the 
identical DOA but different DODs. Four targets locate at 
( , ) (10 ,50 ),(30 ,50 ),(50 ,50 ),(70 ,50 )θ ϕ = D D D D D D D D . The noise 
matrix is independent zero-mean unit variance entries with 
Student-t distribution. The obtained result is shown in Fig. 4.  

Example 3: The performance of our method is 
compared with that of the 2D-MUSIC algorithm [5] and the 
ESPRIT method [6] in non-Gaussian environment. Two 
closely spaced targets locate at ( ) ( )( , ) 30 ,40 , 27 ,45θ ϕ = D D D D . The 

simulation results in Fig. 5 present the root mean square 
error (RMSE) versus SNR. We observe that the proposed 
algorithm has better performance on precision compared 
with the other two methods under non-Gaussian noise and 
for MN not small compared to L. 

 
5. CONCLUSION 

 
Aiming at large scale MIMO radar system, a novel random 
matrix-based method for joint DOD and DOA estimation in 
non-Gaussian noise is proposed. Compared with traditional 
algorithms, the proposed algorithm has several advantages: 
When the observations is close to the product of the 
numbers of the transmit and receive array elements, the 
proposed algorithm performs better than other measures. 
Also, it performs robustness when the noise in the radar 
returns are characterized by non-Gaussian distribution. By 
using the 2D polynomial rooting, the algorithm does not 
require a time-consuming search in 2D space. It improves 
the performance of DOD and DOA estimation in bistatic 
MIMO radarr with large arrays and non-Gaussian noise.  
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Fig. 5. RMSE of DOA and DOD estimation by 2D-MUSIC, ESPRIT and 
our method under Student-t distribution noise. P=2, N=M=8, L=80. 
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Fig. 4. Robust DOD and DOA estimation when two targets have the same 
DOA but different DODs. P=4, M=N=8, L=80, SNR=10dB, under 
Student-t distribution noise. 
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Fig. 3. The result of robust  DOD and DOA estimation under Student-t 
distribution noise. P=4,  M=N=8,  L=80,  SNR=10dB.  
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Fig. 2.  The result of robust  DOD and DOA estimation under Gaussian 
noise. P=4,  M=N=8,  L=80,  SNR=10dB. 
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