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ABSTRACT

This paper proposes a novel sparse Bayesian learning (SBL) frame-

work towards target imaging in monostatic MIMO radar systems.

Owing to the improved sparse signal recovery guaranteed by SBL,

the proposed SBL-based imaging approach is seen to yield a higher

resolution and significantly greater sidelobe suppression in compar-

ison to the existing state-of-the-art non-sparse and sparse imaging

techniques. Further, a novel joint SBL-based target imaging and an-

gular Doppler frequency estimation scheme is also developed for

scenarios with multiple mobile point targets and unknown angular

Doppler frequencies. It is demonstrated that the Doppler frequency

estimates can be obtained based on a first order Taylor series expan-

sion of the overcomplete dictionary matrix expressed as a function of

the Doppler frequencies. Simulation results are presented to validate

the efficacy of the proposed techniques.

Index Terms— Monostatic MIMO radar, sparse Bayesian learn-

ing (SBL), target imaging, angular Doppler frequency estimation.

1. INTRODUCTION

Active sensing systems such as radars transmit and receive one or

more probing signals in order to perform imaging of the potential

targets and estimate various target related parameters in the scanning

region [1–3]. In this context, a monostatic multiple-input multiple-

output (MIMO) radar system employs both transmit and receive ar-

rays with multiple co-located antennas in order to provide improved

waveform diversity [4]. However, existing techniques such as de-

lay and sum (DAS), CAPON, iterative adaptive approach (IAA) etc.

[5, 6] exhibit poor target imaging accuracy owing to the availability

of fewer measurements coupled with the fact that these techniques

do not exploit the sparsity inherent in the target distribution.

Recently, several compressive sensing based-techniques have

been proposed in the context of target imaging in MIMO radars

[7, 8]. Unlike the LASSO-based scheme in [9] wherein one requires

tuning of a regularization parameter based on the unknown sparsity

level to obtain an approximate sparse solution, other parameter free

recovery algorithms, such as sparse learning via iterative minimiza-

tion (SLIM) [10] and narrowband SLIM-0 [11] etc., do not converge

to the maximally sparse solution and thus lead to unwarranted side

lobes during the imaging process. In this regard, the sparse Bayesian

learning (SBL) framework based on a Gaussian prior, has been uti-

lized for producing the maximally sparse solutions in the context of

temporally and spatially sparse MIMO channel estimation [12–14].

Motivated by these observations, this work proposes schemes

for point target imaging in monostatic MIMO radar systems based on

the SBL framework, considering the scenario wherein both the trans-

mitter and the receiver have only partial knowledge of the Doppler

frequencies associated with the targets. Subsequently, a more prac-

tical target imaging scenario is considered in which both the MIMO

radar transmitter and receiver possess no knowledge of the Doppler

frequencies. For this setting, a novel SBL-based scheme is proposed

which jointly estimates the reflectivity parameters as well as the as-

sociated angular Doppler frequencies of the different targets in the

radar scanning range. The proposed technique initially partitions the

Doppler scanning region into bins followed by SBL-based estima-

tion of the reflectivity parameters of various targets, employing the

perturbed overcomplete dictionary matrix generated using the coarse

Doppler frequency estimates. Subsequently, a first order Taylor se-

ries approximation of the dictionary matrix, expressed as a function

of the Doppler frequencies, is used to obtain the refined angular fre-

quency estimates. Simulation results demonstrate the improved per-

formance of SBL-based imaging in comparison to other non-sparse

and sparse schemes for MIMO radar systems.

2. MIMO RADAR SYSTEM MODEL

Consider a narrowband MIMO radar system with M transmit and N
receive antennas such that the platform is stationary while the point

targets are in motion [10, 15]. Let xi ∈ C
1×S denote the signal

transmitted from the ith transmit antenna. The Doppler shifted sig-

nal is, xi (ωd) = xi ⊙ φ (ωd) ∈ C
1×S , where 1 ≤ d ≤ D denotes

the dth Doppler bin, ωd corresponds to the known angular Doppler

frequency associated with the target(s) in the dth Doppler bin and

the Doppler shift vector φ (ωd) corresponding to ωd is given by,

φ (ωd) =
[
1, ejωd , . . . , ejωd(S−1)

]
∈ C

1×S . The transmit signal

matrix Xd =
[
xT
1 (ωd) , . . . ,x

T
M (ωd)

]T
∈ C

M×S where the trans-

mit steering vector ca =
[
1, . . . , e

−j2πdt(M−1) sin(θa)
λ

]T
∈ C

M×1

and the receive steering vector da =
[
1, . . . , e

−j2πdr(N−1) sin(θa)
λ

]T

∈ C
N×1 correspond to the ath angular bin ∀ 1 ≤ a ≤ A. The

quantities dt, dr denote the inter-element spacing of the transmit

and the receive antenna arrays respectively and θa represents the

direction-of-arrival (DOA) of the target(s) in the ath angular bin

relative to the transmit array. In order to incorporate the maxi-

mum possible delay between the reflected signals corresponding to

1 ≤ r ≤ R range bins, the modified signal matrix can be expressed

as, X̃d =
[
Xd 0M×(R−1)

]
∈ C

M×(S+R−1), where 0M×(R−1)

denotes the M × (R − 1) matrix of zeros. Let βr,a,d denote the

complex reflectivity parameter proportional to the radar cross sec-

tion of the point targets present in the rth range, ath angular and

dth Doppler bin. The received signal Y ∈ C
N×(S+R−1) can be

expressed as,

Y =

R∑

r=1

A∑

a=1

D∑

d=1

βr,a,ddac
T
a X̃dJr +Q, (1)

where Q ∈ C
N×(S+R−1) denotes the additive white Gaussian noise

matrix and Jr ∈ R
(S+R−1)×(S+R−1) represents the shift matrix
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used for temporal alignment of the received signals corresponding

to different range bins and is given as,

Jr =




0 0 · · · 1
︸ ︷︷ ︸

r

0 · · · 0

...
...

. . . 1
0


 . (2)

Using the standard vec operator defined in [16], the vector equivalent

y ∈ C
N(S+R−1)×1 of the received signal matrix Y is given by,

y = Ψg + q, (3)

where the dictionary matrix Ψ ∈ C
N(S+R−1)×RAD is,

Ψ =
[
ψ1,1,1,ψ1,1,2, . . . ,ψR,A,D

]
, (4)

with each component ψr,a,d ∈ C
N(S+R−1)×1 given by, ψr,a,d =

vec
(
dac

T
a X̃dJr

)
and the weight vector g = [β1,1,1, . . . , βR,A,D]T

∈ C
RAD×1. Note that each component of the noise vector

q ∈ C
N(S+R−1)×1 is independent and identically distributed (IID)

with zero mean and variance σ2. Recent studies [10, 11] have illus-

trated that owing to the fact that the number of targets present in the

scanning region is far less than the total number of potential target

locations, the weight vector g is sparse in nature. Further, the avail-

ability of only a limited number of measurements frequently leads to

ill-posed estimation scenarios with N (S +R − 1) << RAD, thus

rendering the MIMO radar imaging problem additionally challeng-

ing. Existing approaches in literature employ l1 [9] and lq [10, 11]

norm minimization-based sparse signal recovery techniques in the

context of imaging for MIMO radars. However, this work employs

the sparse Bayesian learning framework [12] for MIMO radar imag-

ing, owing to its improved performance as exemplified in works

such as [13, 14]. Let a parameterized Gaussian prior be assigned to

the weight vector g as, p (g; γ) =
∏RAD

l=1 (πγl)
−1 e

−
|g(l)|2

γl , where

γ = [γ1, γ2, . . . , γRAD] such that each γl, 0 ≤ γl ≤ 1, denotes

the hyperparameter associated with the lth component of the weight

vector g and corresponds to the reflection coefficient of the lth point

target where l = (r − 1)AD + (a− 1)D + d. The next section

outlines the proposed SBL-based target imaging technique in the

context of MIMO radar systems.

3. SBL-BASED JOINT DOPPLER FREQUENCY

ESTIMATION AND TARGET IMAGING

This section initially describes the SBL-based target imaging scheme

followed by the development of the proposed joint Doppler fre-

quency estimation and target imaging framework for MIMO radar

systems. As illustrated in [12], the iterative expectation maxi-

mization (EM) algorithm can be readily employed to obtain the

maximum likelihood (ML) estimates γ̂ of the hyperparameters

corresponding to the weight vector g. The expectation (E-step)

in the kth iteration evaluates the log-likelihood L
(
γ | γ(k)

)
=

E
g|y;γ(k) {log p (y,g;γ)} and results in the posterior distribution

of the weight vector g as, p
(
g | y;γ(k)

)
∼ CN

(
µ(k)

g ,Σ
(k)
g

)
.

The a posteriori mean vector µ(k)
g ∈ C

RAD×1 and covariance ma-

trix Σ
(k)
g ∈ C

RAD×RAD are evaluated as, µ(k)
g = σ−2Σ

(k)
g ΨHy

and Σ
(k)
g =

(
σ−2ΨHΨ+

(
Γ̂

(k)
)−1

)−1

where the hyperparam-

eter matrix Γ̂
(k)

= diag
(
γ̂
(k)
1 , γ̂

(k)
2 , . . . , γ̂

(k)
RAD

)
. The maximiza-

tion (M-step) obtains the hyperparameter estimates γ̂
(k+1)
l , ∀ 1 ≤

l ≤ RAD by maximizing the log-likelihood L
(
γ | γ(k)

)
as [12],

γ̂
(k+1)
l = argmax

γl≥0
E

g|y;γ(k) {p (y | g; γ)}+

argmax
γl≥0

E
g|y;γ(k) {p (g; γ)}

= E
g|y;γ(k)

[
g (l)2

]
= Σ

(k)
g (l, l) +

∣∣∣µ(k)
g (l)

∣∣∣
2

,

where Σ
(k)
g (l, l) and µ(k)

g (l) denote the (l, l) and lth elements of

Σ
(k)
g and µ(k)

g respectively. After k = KEM EM iterations, the

final weight vector estimate is given by, ĝSBL = µ(KEM )
g . It is

observed that owing to the superior sparse signal recovery capabil-

itites of the SBL framework, the hyperparameter estimates γ̂l and

the weights ĝSBL(l) corresponding to (r, a, d) i.e. the range, angle

and Doppler 3-tuple containing no point targets are driven to zero,

thereby substantially enhancing the accuracy of radar imaging.

One of the shortcomings associated with the system model in

section 2 is the absence of information regarding the exact Doppler

frequency ω̃d associated with the target(s) corresponding to the dth

Doppler bin ∀ 1 ≤ d ≤ D. This implies that ω̃d can take any value

between the lower and the upper limits of the dth bin, thus necessi-

tating the development of an improved framework for joint Doppler

frequency estimation and target imaging. Owing to the fact that the

scanning region of the radar is known, the known Doppler range is

partitioned into D Doppler bins with ωd, 1 ≤ d ≤ D corresponding

to the angular frequencies of the bin boundaries. Further, the initial

estimate of the Doppler frequency vector ω̃
(0) ∈ R

D×1 correspond-

ing to the D bins is chosen as, ω̃
(0) = [ω1, ω2, . . . , ωD]T .

For the proposed joint Doppler frequency estimation and target

imaging scheme, since the exact Doppler frequency vector ω̃ is un-

known at the receiver, the dictionary matrix Ψ for estimation of the

weight vector g using SBL is constructed as per (4) employing the

initial Doppler frequency estimates ω̃
(0)

. The weight vector ĝSBL

is estimated using the SBL framework described earlier, followed by

segregation of the hyperparameter estimates γ̂ corresponding to each

of the D Doppler bins. Subsequently, the average of the hyperpa-

rameter estimates γ̂d,avg corresponding to each dth bin is evaluated

and this value is compared with a threshold ηth chosen heuristically.

Corresponding to the Doppler bins 1 ≤ d ≤ D : γ̂d,avg ≤ ηth, the

weight coefficients ĝSBL(l) of the targets of the respective (r, a, d)
bins ∀ 1 ≤ r ≤ R, 1 ≤ a ≤ A are set to zero. This operation is

performed owing to the fact that the Doppler bin(s) corresponding

to the target(s) will have a significantly higher value of γ̂d,avg un-

like the remaining bins where γ̂d,avg will evaluate to values close

to zero. This further eliminates the necessity to estimate the exact

Doppler frequencies corresponding to all such bins where targets are

absent. Let a total number of D′ Doppler bins satisfy the above cri-

teria and ∆ω ∈ R
D′×1 denote the difference between the initial and

the true Doppler frequency vectors ω̃
(0)

and ω̃ respectively. Note

that since the insignificant Doppler bins have been eliminated, ω̃
(0)

now comprises of the frequencies of the bin boundaries correspond-

ing to only the significant D′ bins. Since the dictionary matrix Ψ

can be expressed as a function of the Doppler frequency vector ω̃,

employing the Taylor series expansion, the true dictionary matrix

Ψ (ω̃) can be expressed around the local neighborhood of the initial

estimate of the Doppler frequency vector ω̃
(0)

as,

Ψ (ω̃) = Ψ
(
ω̃

(0) +∆ω
)

≈ Ψ
(
ω̃

(0)
)
+

∂

∂ω̃
Ψ (ω̃)|

ω̃=ω̃(0) ∆ω, (5)

where ∆ω can be obtained as,

3012



20 24 28 32 36 40
10

−6

10
−4

10
−2

10
0

10
2

Transmit SNR(dB)

M
S

E
 i
n

 g

 

 

LASSO

IAA

SLIM−0

SBL

BCRB

(a)

−2 0 2 4 

15 

45 

75

105

Angle(deg)

R
a

n
g

e
 B

in

 

 


β

 (
d

B
)

−40

−30

−20

−10

0

(b)

−2 0 2 4 

15

45

75

105

Angle(deg)

R
a

n
g

e
 B

in

 

 


β

 (
d

B
)

−40

−30

−20

−10

0

(c)

−2 0 2 4 

15 

45 

75 

105

Angle(deg)

R
a
n

g
e
 B

in

 

 


β


 (

d
B

)

−40

−30

−20

−10

0

(d)

−2 0 2 4 

15 

45 

75 

105

Angle(deg)

R
a
n

g
e
 B

in

 

 


β


 (

d
B

)

−40

−30

−20

−10

0

(e)

−2 0 2 4 

15 

45 

75 

105

Angle(deg)

R
a
n

g
e
 B

in

 

 


β


 (

d
B

)

−40

−30

−20

−10

0

(f)

Fig. 1: (a) MSE vs. SNR of weight vector g. MIMO angle-range images for (b) True targets. (c) LASSO estimate. (d) IAA estimate. (e)

SLIM−0 estimate. (f) SBL estimate (corresponding to the simulation scenario described in section 4.1).

∆ω = argmin
∆ω

∥∥∥∥y −Ψ
(
ω̃

(0)
)
ĝ−

(
∂

∂ω̃
Ψ (ω̃)|

ω̃=ω̃(0) ∆ω

)
ĝ

∥∥∥∥
2

= argmin
∆ω

∥∥∥y −Ψ
(
ω̃

(0)
)
ĝ−B∆ω

∥∥∥
2

. (6)

The derivative matrix B ∈ C
N(S+R−1)×D′

is obtained as, B =
[bj ] , such that each constituent vector bj ∈ C

N(S+R−1)×1 is given

by bj = ∂
∂ω̃j

Ψ (ω̃)|
ω̃j=ω̃

(0)
j

ĝ, ∀ j : j ∈ D where D denotes the

set containing the indices corresponding to the significant Doppler

bins and |D| = D′. Further, each component of bj evaluates as,

bj (N (s+ r − 2) + n) =





∑M

i=1 j (s− 1) xi,s (ωd) e
−j 2π

λ
sin(θa)[(n−1)dr+(i−1)dt],

∀ 1 ≤ s ≤ S, 1 ≤ n ≤ N
0, otherwise

It can now be seen that the solution to the above minimization prob-

lem in (6) is obtained as the least-squares solution given by [17],

∆ω = Re
{(

BHB
)−1

BH
(
y −Ψ

(
ω̃

(0)
)
ĝ
)}

. Finally, the

Doppler frequency vector estimate ˆ̃ω is obtained as,

ˆ̃ω = ω̃(0) +∆ω. (7)

Further, in order to enhance the imaging of point targets, estimation

of the SBL-based weight vector g is repeated using the refined dic-

tionary matrix Ψ
(
ˆ̃ω
)

, constructed employing the estimates of the

exact Doppler frequency vector ˆ̃ω evaluated in (7). Note that the ac-

curacy of the Taylor series approximation in (5) increases as the true

Doppler frequencies ω̃ associated with the targets in the different

Doppler bins lie closer to the bin boundaries. This in turn results in

lower perturbation of the dictionary matrix Ψ thereby yielding more

accurate Doppler frequency estimates ˆ̃ω.

Table 1: Comparison of simulation results (targetwise Doppler fre-

quency estimate ˆ̃ω and MSE in ω̃) for both regular and finer Doppler

grid scenarios

Case 1:∆ωD = 5o Case 2:∆ωD = 2o

ˆ̃ω MSE ˆ̃ω MSE

Target1 −19.9857o 0.0345 −19.8572o 0.0033

(ω̃ = −19.8o)
Target2 −15.0022o 1.4453 −14.1621o 0.1311

(ω̃ = −13.8o)
Target3 −9.9962o 0.0385 −9.9996o 0.0398

(ω̃ = −9.8o)

However, as the exact Doppler frequencies ω̃ lie away from

the bin boundaries, the associated perturbation in Ψ will increase,

thereby yielding inaccurate Doppler frequency estimates. In such a

scenario, a natural procedure to obtain robust Doppler frequency es-

timates is by employing a finer Doppler grid i.e. to increase the num-

ber of Doppler bins D by decreasing the angular frequency separa-

tion between the adjacent Doppler bins ∆ωD. The resulting Doppler

frequencies ω̃ will now lie closer to the bin boundaries of the refined

Doppler bins and the proposed SBL-based joint Doppler frequency

estimation and imaging framework described above will yield more

precise angular Doppler frequency estimates. Note that, this en-

hanced performance is however achieved at the cost of increased

computational complexity owing to the increase in the number of

Doppler bins D for the scenario with a finer Doppler grid.

4. SIMULATION RESULTS

The simulation results below are broadly categorized into two sub-

sections. The first part demonstrates a performance comparison of

the proposed SBL-based imaging scheme with other existing tech-

niques, while the second part illustrates the target imaging and mean
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Fig. 2: MIMO angle-range images for (a) True target. (b) SBL estimate for ∆ωD = 5o. (c) SBL estimate for ∆ωD = 2o.
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simulation scenario described in section 4.2).

squared error (MSE) performance for the proposed joint Doppler

frequency estimation and target imaging technique.

4.1. Performance comparison of SBL versus Existing Imaging

Schemes for Monostatic MIMO radar systems

A MIMO radar system with M = 5 transmit and N = 5 receive an-

tennas, operating at a wavelength of λ = 0.03m is considered. The

transmit and receive antennas are arranged as uniform linear arrays

(ULA) with inter transmit and receive antenna array spacing dt =
2.5λ and dr = 0.5λ respectively [18–20]. Each transmit signal xi

corresponding to the ith transmit antenna, contains S = 8 subpulses

of duration Ts = 0.1µs. The transmit signal to noise power ratio

(SNR) is defined as, SNR =
(
10 log10

(
tr
(
XHX

)
/Sσ2

))
. Fur-

ther, a radar imaging scene spanning a range of 0− 120m is divided

into R = 8 range bins such that the range separation ∆R = 15m,

with the angular region ranging from −3o to 4o relative to the array’s

normal direction with A = 8 angular bins such that the separation

between the adjacent angular bins is ∆θA = 1o. The Doppler fre-

quency ranges from −20o to 15o with D = 8 Doppler bins which

results in separation of ∆ωD = 5o. The Doppler shift ωd(in
o) =

(2πfdTs) (180
o/π) where the Doppler frequency fd = 2vrel/λ and

vrel denotes the relative velocity of the radar platform and the target.

The number of targets is set as P = 8 and thus the weight vector

g contains 8 non-zero elements. Each reflection coefficient γl cor-

responding to the presence of target in a particular (r, a, d) : 1 ≤
r ≤ R, 1 ≤ a ≤ A, 1 ≤ d ≤ D range-angle-Doppler bin as-

sumes any value 0 < γl ≤ 1. The maximum number of EM itera-

tions is fixed as, KEM = 600 such that the convergence accuracy is∥∥∥γ(k+1)
l − γ

(k)
l

∥∥∥
2
< 10−3. The SBL algorithm is initialized with

the hyperparameters γ
(0)
l = 1 ∀ 1 ≤ l ≤ RAD. Fig. 1(a) compares

the MSE performance of the reflectivity parameter estimates ĝ (l)
obtained using various non-sparse and sparse signal recovery tech-

niques such as IAA [6,15], LASSO [9], SLIM-0 [11] and SBL while

Figs. 1(b)-(f) depict the angle-range target estimates corresponding

to the 6th Doppler bin for various schemes at 32dB SNR. It can be

observed that the proposed SBL-based imaging has the lowest MSE

in comparison to the existing schemes. Further, Fig. 1(f) shows that

the SBL-based approach yields accurate target locations with very

low intensity sidelobes thereby demonstrating that it is best suited

for target imaging in monostatic MIMO radar systems.

4.2. Joint Doppler frequency estimation and Target Imaging

Consider the same scenario described in section 4.1 with A = 8
angular bins which span an angular range from −73o to − 3o rela-

tive to the array’s normal direction with ∆θA = 10o. The number

of targets is set as P = 3 with the Doppler frequency vector ω̃ =
[−19.8o,−13.8o,−9.8o]T . In case 1, the Doppler scanning range

(−20o to − 5o) is divided into D = 4 bins with separation ∆ωD =

5o such that ω̃
(0) = [−20o,−15o,−10o,−5o]T . Note that the tar-

gets p = 1, 2, and 3 are located each at 4%, 24% and 4% of ∆ωD

away from the respective bin boundaries. Further, in case 2, a

finer grid is considered for the Doppler range with the Doppler

scanning region divided into D = 8 bins, ∆ωD = 2o such

that ω̃
(0) = [−20o,−18o, ...,−6o]T and all the targets are now

10% of ∆ωD away from the respective bin boundaries. To maintain

a similar convergence accuracy as described previously, the number

of EM iterations is chosen as KEM = 500 and KEM = 1100 for

∆ωD = 5o and ∆ωD = 2o respectively. It is observed that after

KEM iterations, γ̂l (corresponding to the (r, a, d) 3-tuple containing

no point target) lies between 10−5 ≤ γ̂l ≤ 10−2 which results in

γ̂d,avg (corresponding to the Doppler bins where targets are absent)

∈
[
10−5, 10−2

]
. Therefore, ηth is fixed as, ηth = 10−2. Table.

1 presents the estimated Doppler frequency ˆ̃ω at an SNR of 35dB

for both the cases. It can be observed that for target 2, the MSE in

the estimate of the angular frequency ω̃ is lower for case 2 where

∆ωD = 2o. This can be attributed to the fact that the finer grid re-

sults in the second target’s actual Doppler frequency being closer to

the corresponding bin boundary for case 2 when compared to case 1.

Hence, the error in ˆ̃ω corresponding to the second target decreases.

Figs. 2(a)-(c) illustrate the SBL-based angle-range images for the

second target while Fig. 3 demonstrates that considering a finer grid

leads to a reduction in the overall MSE of the reflectivity parameter

estimates.

5. CONCLUSION

This paper proposes a SBL-based target imaging framework fol-

lowed by the development of a novel joint Doppler frequency es-

timation and target imaging technique in monostatic MIMO radar

systems. A comparative simulation study vis− à−vis conventional

non-sparse and sparse imaging schemes demonstrates the superior

imaging accuracy and sidelobe suppression of the proposed SBL-

based approach for MIMO radar systems.
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