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ABSTRACT

This paper addresses the problem of optimizing the information rate
of a multiple-input multiple-output (MIMO) secondary user (SU) in
an underlay cognitive radio (CR) network when channel state infor-
mation (CSI) from the SU to the primary user (PU) is inaccurate.
Rather than applying the commonly used interference temperature
metric, the proposed SU transmit precoder limits the interference
leakage rate (LR) to maintain the quality of service (QoS) for the PU.
We model the uncertainty in CSI as deterministic with the Schatten
norm and apply the worst-case principle to derive a robust solution.
Two solution methods are proposed to address the design with the
LR metric. The first simplifies the LR metric that is valid under
the low interference-to-noise ratio (INR) condition and the second
uses an iterative linearization technique. We demonstrate the perfor-
mance of the proposed solutions by numerical simulations.

Index Terms— Convex optimization, CSI uncertainty, leakage
rate, MIMO cognitive radio, Schatten norm

1. INTRODUCTION

The emergence of cognitive radio (CR) has brought a promising so-
lution to use efficiently the scarce spectrum for the legacy wireless
systems. Among the different proposed paradigms, underlay CR
represents a widely accepted technique in the research study and
the regulation body [1, 2]. The underlay paradigm allows the co-
existence of unlicensed or secondary users (SUs) with licensed or
primary users (PUs), provided that their aggregate interference to
PUs is below a preassigned limit [3–5].

The use of multiple antennas at the CR network nodes brings
the benefits of spatial precoding that can substantially enhance the
performance of SUs, reduce their interference to PUs, and meet the
quality of service of the end users [3]. Most MIMO CR systems
assume accurate knowledge of the channel state information (CSI)
for the direct link from SU-Transmit (SU-Tx) to SU-Receive (SU-
Rx) and the interference link from SU-Tx to PU-Receive (PU-Rx)
(see Fig. 1). In practice SU-Tx only has limited knowledge about
the CSI of the interference link [6–9]. Pretending the limited CSI
as perfect would lead to the violation of the QoS of PU. It is the
objective of this paper to take the inaccuracy of the CSI knowledge
into consideration when designing the SU precoder to maximize the
performance of SU while maintaining the QoS of PU.

We shall model the uncertainty in CSI as deterministic and
within a convex set defined by the Schatten norm, which comprises
several commonly used matrix norms in the literature [10, 11], such
as the nuclear, Frobenius, and Spectral norms that model the rank,
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power, and maximum eigenmode of the CSI uncertainty, respec-
tively. The proposed design uses the worst-case principle to obtain a
robust solution [11–16].

Unlike the previous studies in underlay CR, this paper adopts the
leakage rate (LR) metric as an alternative to the classic interference
temperature (IT) metric to assess the impact of interference on PU-
Rx. The LR metric was originally appeared in [17]. It has been
shown to favor a higher rate for PU than the IT metric, which in
some situations is more appropriate [16].

Precoder design using the LR metric is more complicated since
the optimization problem is not convex and we propose two solutions
for the design. One uses the Lagrange dual formulation and is suit-
able under low interference-to-noise (INR) condition at PU-Rx. The
other employs an iterative linearization approach and is appropriate
regardless of the INR value.

The main contribution of our work is that we design a robust
SU transmit precoder by maintaining the QoS of PU through the LR
metric without restricting the CSI uncertainty defined by a certain
matrix norm. The previous studies do not consider the QoS require-
ment for PU [11, 13], focus on IT metric only [3, 8, 14], or limit to
a specific matrix norm for the uncertainty in CSI [12–15]. Indeed,
we have not come across similar solutions from literature for this
design problem. Although the proposed techniques and numerical
results are shown for single pair of PU and SU, they can be extended
to handle the existence of multiple PUs in the CR network as elabo-
rated in Sections 3 and 4.

The rest of this paper is organized as follows. Section 2 intro-
duces the system and channel uncertainty models and provides the
problem formulation. Section 3 approximates the LR metric at low
INR and develops a precoder design through the Lagrange dual for-
mulation. Section 4 proposes an iterative linearization approach to
obtain the optimal solution for the precoder. Section 5 provides the
simulations and Section 6 concludes the paper.

Notations: Bold upper-case letters denote matrices. det(A),
Tr(A), λmax(A), [A]ij , ‖A‖Sp, and A � 0 represent the deter-
minant, the trace, the maximum eigenvalue, the (ith, jth) element,
the Schatten norm of order p, and the positive semi-definite (PSD)
property of A. (·)† is the Hermitian transpose, log(·) is the natural
logarithm and | · | is the absolute value of a scalar. Cm×n is the
complex space of m× n matrices and Hn is the space of the size n
Hermitian matrices. I is the identity matrix of an appropriate size.

2. SYSTEM MODEL AND PROBLEM FORMULATION

We shall consider a CR system where one PU and one SU, both
equipped with multiple transmit and receive antennas, are present as
depicted in Fig. 1. The PU has Mp and Np transmit and receive
antennas, while the SU has Ms and Ns. The SU communication
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channel is denoted as T ∈ CNs×Ms and the interference channel
from SU-Tx to PU-Rx is S ∈ CNp×Ms . The influence of PU to SU
can be reasonably assumed negligible [18–20].

The SU transmitter encodes d data steams using a linear pre-
coder V ∈ CMs×d and the corresponding codebook is Q = VV†.
We shall model the power characteristics of Q using a general con-
vex setQ as [21]

Q = {Q � 0 : Tr (Q) ≤ P tot, λmax(Q) ≤ Pmax,

[Q]qq ≤ P ant
q , q = 1, · · · ,Ms} (1)

where P tot is the total average transmit power, Pmax is the maxi-
mum average power, and P ant

q is the average power of the qth an-
tenna.

The CSI for T is perfectly known at SU-Tx, while for S is par-
tially known. Specifically, we consider the available CSI of S is in
the form of a covariance matrix R̂S ∈ HMs and it is related to the
actual covariance RS by [16]

RS = R̂S + ∆RS , (2)

where ∆RS ∈ HMs is the uncertainty error matrix. We shall as-
sume that ∆RS belongs to the compact convex set

U = {∆RS : ‖∆RS‖Sp ≤ ε, R̂S + ∆RS � 0} (3)

where ε is the uncertainty radius and ‖ · ‖Sp is the Schatten norm of
order p defined for any A ∈ Cn×m as [10, Proposition 9.2.3]

‖A‖Sp =


(∑min(n,m)

i=1 σp
i

)1/p

, 1 ≤ p <∞
σ1, p =∞

(4)

where σi, i = 1, · · · ,min(n,m), is the singular values of A ar-
ranged in a decreasing order. It is evident from (2) and (3) that RS

lies in a deterministic region that is centered at R̂S .
The objective function for optimization is the mutual informa-

tion C(Q) of SU defined as [3]

C(Q) = log det

(
I +

1

σ2
s

TQT†
)

(nats/s/Hz) (5)

where σ2
s is the noise power at SU-Rx that is known.

The LR metric [16, 17] is adopted here to provide a measure
for the SU interference to PU. This metric quantifies the mutual in-
formation of the interference link from SU-Tx to PU-Rx and it was
shown in [16] to favor a higher rate for PU than the commonly used
IT metric. It is defined as

Γ(Q,RS)
∆
= log det

(
I +

1

σ2
p

R
1/2
S QR

1/2
S

)
−RL (6)

where RL is the maximum allowable interference leakage rate at
PU-Rx, R1/2

S is the matrix square root of RS = S†S, and σ2
p is the

known noise power at PU-Rx.
Based on the worst-case principle [11–16], the optimization

problem to design a robust precoder is

(P-I): max.
Q∈Q

C(Q) (7)

s.t. max.
∆RS∈U

Γ(Q,RS) ≤ 0 . (8)

P-I optimizes the SU rate under the condition (8) that the interference
level in terms of the LR metric is limited toRL when the interference
channel S is partially known. The RS in (8) is dependent on ∆RS

through (2). The problem P-I is not convex in the optimization vari-
able Q due to the LR metric. Two approaches are used to solve P-I,
one considers the low INR situation at PU-Rx and the other applies
local linearization.

SU-Tx
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SU-Rx

PU-Rx

T

S

p
M

p
N

s
M

s
N

Fig. 1. An SU coexists with a PU in an underlay CR network, where
the transmitter and receiver of each user have multiple antennas.

3. LOW INR SOLUTION

We shall first tackle the optimization subproblem of the left side of
(8). The LR metric can be expanded as

Γ(Q,RS) =
1

σ2
p

Tr (RSQ) + o

(
1

σ2
p

‖R1/2
S QR

1/2
S ‖

)
−RL (9)

where ‖ · ‖ is a norm measure [13]. We shall define the interference-
to-noise ratio at PU-Rx as Tr (RSQ)/σ2

p. At low INR regimes
where INR ≤ 0 dB, the second term on the right side of (9) can
be ignored. Hence, for a given precoder Q and under low INR con-
dition, the left side of the interference constraint (8) can be casted
into the following subproblem

(P-II): max.
∆RS

Tr

(
1

σ2
p

(R̂S + ∆RS)Q

)
−RL (10)

s.t. ‖∆RS‖Sp ≤ ε (11)

R̂S + ∆RS � 0 . (12)

The problem P-II is convex in the uncertainty matrix ∆RS and sat-
isfies the Slater’s condition [22]. Therefore, we can represent P-II
using its Lagrange dual. The following proposition gives the struc-
ture of the optimum objective value for (10) in terms of Q through
the Lagrange dual.

Proposition. The expression of the optimum objective value for
the subproblem P-II can be compactly expressed as

1

σ2
p

(
Tr (R̂SQ) + ε‖Q‖Sq

)
−RL (13)

where 1/p+ 1/q = 1 and p is the Schatten norm order.
Proof. The procedure we follow to obtain (13) is to form the

Lagrangian of P-II and maximize it over ∆RS to arrive at the dual
Lagrangian function. We then minimize the dual function with re-
spect to the dual variables associated with the constraints (11) and
(12). For further details, please refer to [16, Appendix D]. �

(13) provides the insight that the uncertainty in RS is being
taken care of by introducing the additive factor ε‖Q‖Sq , which en-
sures a robust solution under the worst-case principle. P-I can now
be solved after replacing the left side of (8) by (13) using some op-
timization package, such as CVX [23]. In the case of multiple PUs,
P-I will have additional interference constraints similar to that in (8).
In solving P-I each of these constraints will become the form in (13).

From the Schatten norm property, the most conservative robust
solution appears by setting p =∞. As q = 1 and ‖Q‖S1 = Tr(Q)
then (13) becomes

1

σ2
p

Tr (R̃SQ)−RL , R̃S = R̂S + εI . (14)
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It indicates that the uncertainty in the interference channel can be
accounted for simply by increasing the eigenvalues of the available
CSI R̂S by ε.

4. ITERATIVE LINEARIZATION SOLUTION

For a given uncertainty channel matrix, the non-convexity of Q in (8)
is handled by using a local minimization method. Such a technique
was previously applied to the log-det function in obtaining a smooth
surrogate for a rank function [24].

The first-order Taylor series expansion of (6) around a certain
Q(k), where k is the iteration index, is

Γ (Q,RS) ≈ log det

(
I +

1

σ2
p

R
1/2
S Q(k)R

1/2
S

)
+ Tr (A(k)(Q−Q(k))) , (15)

A(k) = R
1/2
S

(
σ2
pI + R

1/2
S Q(k)R

1/2
S

)−1

R
1/2
S . (16)

Using the approximation (15), the left side of (8) in P-I can be written
in a compact form as

max.
∆RS∈U

Tr
(
A(k)Q

)
−R(k)

L (17)

where

R
(k)
L = RL − log det

(
I +

1

σ2
p

R
1/2
S Q(k)R

1/2
S

)
+ Tr (A(k)Q(k)) . (18)

P-I is now tractable with respect to Q. Nevertheless, maximizing
over ∆RS for (17) becomes cumbersome.

From the reasoning at the end of Section 3, choosing ∆RS = εI
would produce the most conservative solution for any p. That is, the
correlation matrix

R̄S
∆
= R̂S + εI (19)

represents an upper bound for RS in its deterministic set defined by
R̂S +U , i.e., R̄S � RS . Thus, (17) is guaranteed to be non-positive
when

Γ(k)
max

∆
= Tr(Ā(k)Q)− R̄(k)

L (20)

is non-positive, where Ā(k) and R̄(k)
L are given by (16) and (18) with

RS replaced by R̄S defined in (19).
Algorithm 1 summarizes the steps to solve P-I using the local

linearization approach. We shall start with a small value of Q to
begin the iteration.

Based on [10, Proposition 8.6.13] and the fact that log(·) is a
strictly increasing function, the log-det function is strictly increasing
with respect to Q. Consequently the proposed local linear approxi-
mation will serve as its upper bound and a correct solution is ensured
after the iterations.

When there are several PUs, we can modify Algorithm 1 to han-
dle the additional interference constraints through performing steps
2 and 3 for each PU. Furthermore in step 4, these interference con-
straints in the form of (20) are used to solve P-I. The algorithm ter-
minates when the required rate accuracy for each PU is satisfied.

5. NUMERICAL RESULTS

We shall provide some numerical simulations that illustrate the per-
formance of the proposed designs. The elements of the channel ma-
trices T and S are independently drawn from a circularly symmet-
ric complex Gaussian (CSCG) distribution with zero mean and unit

Algorithm 1 Iterative robust solution for P-I using the local lin-
earization
Requirement: P tot, Pmax, P ant

q for q = 1, · · · ,Ms, RL, ε, and
rate accuracy θ

Initialization: Setting Q(1) = γIMs with γ ≈ 0 [24], counter k =
0, and obtaining Γ(Q(1), R̄S)
repeat

1. k = k + 1.
2. At Q(k), evaluate Ā(k) using (16) and R̄(k)

L using (18) by
replacing RS with R̄S defined in (19).

3. Obtain Γ
(k)
max from (20).

4. Solve P-I by replacing the left side of (8) with Γ
(k)
max and

obtain Q(k+1).
5. Compute Γ(Q(k+1), R̄S) using (6).

until |Γ(Q(k+1), R̄S)− Γ(Q(k), R̄S)| ≤ θ.

variance. We generate the inaccurate CSI matrix R̂S by

R̂S = (S− δS)†(S− δS) (21)

= S†S︸︷︷︸
RS

− (δS†S + S†δS− δS†δS)︸ ︷︷ ︸
∆RS

(22)

where the elements of the uncertainty δS are also drawn indepen-
dently from a zero mean CSCG distribution. The variance of δS
is adjusted such that the Schatten norm of the second term in (22),
∆RS , is not bigger than ε. To avoid trivial uncertainty radius we
do not allow ε ≥ ‖RS‖Sp to ensure a valid R̂S . The uncertainty
radius is set as ε = w‖RS‖S∞ [11], where w ∈ (0, 1) controls the
amount of uncertainty in S. The antenna settings for the SU and PU
are Ms = Ns = 3 and Mp = Np = 6. The noise power values
are σ2

s = σ2
p = 1. The results shown are the averages over 1000

independent realizations of T and S.
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Fig. 2. Rates for SU from the design using low INR approximation
versus the leakage rate limit RL. The results for imperfect interfer-
ence CSI at p = 1, 2, and∞ are shown. The settings of antennas are
Ms = Ns = 3 and Mp = Np = 6. The results are generated by the
average of 1000 realizations for T and S for different values of w.
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Fig. 3. Rates for SU from the iterative linearization solution for
different leakage rate limit RL and amount of interference CSI un-
certainty w. The results are generated by the average of 1000 real-
izations for T and S. The settings for antennas are Ms = Ns = 3
and Mp = Np = 6.
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Fig. 4. Rates for SU from the iterative linearization solution for
different uncertainty levels w = ε/‖RS‖S∞ and leakage rate limit
RL. The results are generated by the average of 1000 realizations
for T and S. The settings for antennas are Ms = Ns = 3 and
Mp = Np = 6.

We first examine the performance of the precoder design under
the low INR condition presented in Section 3. The power settings
in the set Q are P tot = σ2

p = 1, Pmax = P ant
1 = 0.6, and

P ant
q = 0.3 for q = 2, · · · ,Ms. Fig. 2 shows the achieved SU rate

as the leakage rate limit RL in nats/s/Hz increases. The result when
the interference channel is perfectly known is shown as a reference.

When the amount of uncertainty in interference CSI increases (in-
creasing w), the performance is further away from the perfect CSI
scenario as expected. The reduction in performance seems to be
more sensitive at small uncertainty than large. With respect to dif-
ferent p values for the Schatten norm used in defining the uncertainty
set, the difference is more obvious at large amount of uncertainty and
high leakage rate limit.

Next, we look at the behavior of the precoder design using the it-
erative linearization method summarized in Algorithm 1. The SU-Tx
power settings are P tot = 10, Pmax = P ant

1 = 6, and P ant
q = 5

for q = 2, · · · ,Ms. Fig. 3 illustrates the achieved SU rate at dif-
ferent values of RL and several levels of the interference CSI uncer-
tainty, with the order of the Schatten norm for CSI uncertainty set
fixed to p = ∞. We also include the result when the interference
CSI is perfectly known for reference purpose. The proposed design
yields a solution that follows very well with the ideal solution with
perfect CSI. Similar to Fig. 2, higher amount of CSI uncertainty
(increasing w) would reduce the performance of SU.

Fig. 4 illustrates the behavior of the SU rate for a given RL as
the amount of CSI uncertainty increases. The simulation setting is
similar to that in Fig. 3. The SU rate is more sensitive to the CSI
uncertainty level when it is smaller. The SU rate increases with RL

as expected.
The solution using the low INR approximation has similar com-

plexity as the algorithm in [12] for the uncertainty set defined by
p = 2. At RL = 0.9 nats/s/Hz and w = 0.2 the computation time
for the proposed algorithm is 1.5 times higher. The required time for
the iterative linearization approach is 6.5 times higher for θ = 10−4,
where the power settings are similar to that in Fig. 2.

6. CONCLUSION

In this paper, we have proposed two precoder solutions that optimize
the performance of SU in a MIMO CR network, where the CSI from
SU to PU is partially known and LR metric is used to ensure the
QoS of PU. We employed the Schatten norm to characterize the CSI
uncertainty. The first solution simplifies the LR metric under low
INR condition and applies the Lagrange dual to obtain a tractable
and compact interference constraint for the optimization problem to
reach a solution. The second exploits linearization through the Tay-
lor series expansion and uses iteration to solve for a solution. Nu-
merical simulations have shown the validity of the proposed tech-
niques and their behaviors as the leakage rate limit and the amount
of uncertainty vary.
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