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ABSTRACT

To reach a higher number of degrees of freedom by exploiting the
fourth-order difference co-array concept, an effective structure ex-
tension based on two-level nested arrays is proposed. It increases
the number of consecutive lags in the fourth-order difference co-
array, and a virtual uniform linear array (ULA) with more sensors
and a larger aperture is then generated from the proposed structure,
leading to a much higher number of distinguishable sources with
a higher accuracy. Compressive sensing based approach is applied
for direction-of-arrival (DOA) estimation by vectorizing the fourth-
order cumulant matrix of the array, assuming non-Gaussian imping-
ing signals.

Index Terms— Fourth order, difference co-array, cumulant,
sparse array, direction of arrival estimation, compressive sensing.

1. INTRODUCTION

Co-array equivalence plays an important role in designing sparse ar-
ray structures [1, 2], leading to an effective solution for underdeter-
mined direction-of-arrival (DOA) estimation. One class of arrays
employing this concept is the co-prime array [3], where both the
spatial smoothing based subspace methods [3–5] and compressive
sensing (CS) based methods [6–10] can be used for DOA estima-
tion. Another class of arrays falling into this category is the nested
array [11], and spatial smoothing based subspace approaches have
been employed for DOA estimation [11–13].

Most of the work about DOA estimation for the aforementioned
structures are based on the second-order difference co-array concept.
Actually, high-order statistics have been exploited for DOA estima-
tion over the decades to resolve more sources than the number of
sensors. The virtual array concept for the fourth-order cumulants
based DOA estimation [14, 15] is presented in [16]. Based on the
2q-th order cumulants [17, 18], the 2q-th order difference co-array
concept is proposed in [19]. Then, 2q-level nested arrays are pro-
posed with a substantial increase in the number of degrees of free-
dom (DOFs) [19], and spatial smoothing based subspace method is
applied to find the DOAs. However, although the 2q-level nested
array provides a systematic way for convenient structure construc-
tion, it is not optimum and further improvement is possible since the
physical array aperture and the symmetric features in the high-order
difference co-array have not been fully exploited in array construc-
tion.

In this paper, we focus on how to more effectively construct an
array based on the fourth-order difference co-array concept, and a
sparse array extension based on the standard two-level nested array
is proposed. It is shown that the number of DOFs of the new con-
struction is always larger than the standard two-level nested array,
and when the total number of physical sensors is less than 21, the
proposed structure will always give more DOFs than the existing
four-level nested array, while for 20 physical sensors for our pro-
posed structure, the number of virtual ULA sensors at the fourth-
order difference co-array stage can be 2223, which is sufficient for
most applications. With this significantly increased DOFs, CS-based
method is employed for DOA estimation.

This paper is organized as follows. A review of DOA estimation
based on the four-level nested array is presented in Sec. 2. The
specifically designed array structure based on two-level nested arrays
is proposed in Sec. 3. Simulation results are provided in Sec. 4, and
conclusions are drawn in Sec. 5.

2. REVIEW OF DOA ESTIMATION BASED ON THE
FOUR-LEVEL NESTED ARRAY

Generally, we use S to represent the set of sensor positions, and an
N -sensor linear array can be expressed as

S =
{
p0 · d, p1 · d, . . . , pN−1 · d

}
, (1)

where pn · d is the position of the n-th sensor, n = 0, 1, . . . , N − 1,
and d is the unit spacing.

Assume that there are K mutually uncorrelated far-field nar-
rowband signals sk(t) impinging from incident angles θk, k =
1, 2, . . . ,K, respectively. After sampling with a frequency fs, the
array output model in discrete form is given by

x[i] = A(θ)s[i] + n[i] , (2)

where x[i] is the observed discrete signal vector, the source sig-
nal vector s[i] = [s1[i], . . . , sK [i]], and n[i] is the noise vector.
The steering matrix A(θ) = [a(θ1), . . . ,a(θK)], with its k-th col-
umn vector a(θk), i.e. the steering vector corresponding to the k-th
source signal, expressed as

a(θk) =

[
e−j

2πp0d
λ

sin(θk), . . . , e−j
2πpN−1d

λ
sin(θk)

]T

. (3)
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As a special array structure exploring the fourth-order difference
co-array, the Four-Level Nested Arrays (FL-NA) proposed in [11,19]
has four sub-arrays. With N0 = 0, we have N0 + 1 = 1. For
1 ≤ m ≤ 3, the m-th sub-array has Nm sensors located at{

nd
[∏m−1

m̃=0
(Nm̃ + 1)

]
, n = 1, 2, . . . , Nm

}
, (4)

while the sensors of the fourth sub-array with N4 + 1 sensors are
located at{

nd
[∏3

m̃=0
(Nm̃ + 1)

]
, n = 1, 2, . . . , N4 + 1

}
. (5)

Then, there are N =
∑4

m=1 Nm + 1 physical sensors in total.
Under the assumption of Gaussian white noise, the fourth-order

cumulant matrix of the observed column vector x[i] for the arrange-
ment indexed by l can be obtained by

C4,x(l) =
K∑

k=1

c4,sk

[
a(θk)

⊗l ⊗ a(θk)
∗⊗(2−l)

]
×

[
a(θk)

⊗l ⊗ a(l, θk)
∗⊗(2−l)

]H
,

(6)

where l = 0, 1. a(θk)⊗l denotes a(θk)⊗. . .⊗a(θk) with a(θk) for l
times, and {·}∗ represents the conjugate operation. The fourth-order
auto-cumulant of source signal sk[i] can be expressed as

c4,sk = Cum
{
sk[i], sk[i], s

∗
k[i], s

∗
k[i]

}
, (7)

where 1 ≤ k ≤ K, and Cum{·} is the cumulants operator.
We set l = 1, and by vectorizing C4,x(1) we obtain

z = vec {C4,x(1)} = Bu . (8)

Equation (8) characterises a virtual array, whose equivalent
steering matrix B = [b(θ1), . . . ,b(θK)] with each column vector
b(θk) = [a(θk)⊗ a(θk)

∗]∗ ⊗ [a(θk)⊗ a(θk)
∗]. The equivalent

signal vector u = [c4,s1 , c4,s2 , . . . , c4,sK ].
To obtain the DOA results, subspace methods can be applied di-

rectly to C4,x(l) in (6), and spatial smoothing based subspace meth-
ods can be employed in the virtual model characterised by (8).

3. SPARSE ARRAY EXTENSION BASED ON THE
FOURTH-ORDER DIFFERENCE CO-ARRAY CONCEPT

3.1. The fourth-order difference co-array perspective for a two-
level nested array

For a given physical array in (1), the second-order difference co-
array (also known as difference co-array) set is defined as

CA = ΦA · d , (9)

with the set of difference co-array lags ΦA given by

ΦA = {pn1 − pn2} , (10)

where 0 ≤ n1, n2 ≤ N − 1.
According to [19], the set of fourth-order difference co-array is

defined as

CB = ΦB · d , (11)

with the set of the fourth-order difference co-array lags

ΦB = {pn1 + pn2 − pn3 − pn4} . (12)

where 0 ≤ n1, n2, n3, n4 ≤ N − 1.
For a given unit spacing d, a general Two-Level Nested Array

(TL-NA) consists of two sub-arrays [11], where the first sub-array
has N1 sensors starting from the position 1d with d as the spacing
between adjacent physical sensors, and the second sub-array has N2

sensors starting from the position (N1 + 1)d with an inter-element
spacing (N1 + 1)d.

There are N1 +N2 physical sensors in total, and the difference
co-array achieved in the set of co-array lags ΦA can be expressed as

ΦA = {µ,−N2(N1 + 1) + 1 ≤ µ ≤ N2(N1 + 1)− 1} . (13)

ΦA only contains consecutive integers from −N2(N1 + 1) + 1
to N2(N1 + 1) − 1, corresponding to a ULA of 2N2(N1 + 1) − 1
virtual sensors. The set ΦB in (12) can be rewritten as

ΦB = {(pn1 − pn3)− (pn4 − pn2)} . (14)

Note that (pn1 − pn3) ∈ ΦA and (pn4 − pn2) ∈ ΦA. Then the
fourth-order difference co-array set ΦB for the TL-NA is given by

ΦB = {µ,−2N2(N1 + 1) + 2 ≤ µ ≤ 2N2(N1 + 1)− 2} . (15)

The number of consecutive integers is increased to 4N2(N1 +
1) − 3 in ΦB , which suggest that more DOFs can be exploited for
DOA estimation by employing the fourth-order difference co-array
based method. However, the set ΦA of the TL-NA indicates that
the virtual array generated at the difference co-array stage is only a
ULA, and the increase in the number of consecutive integers from
ΦA to ΦB is limited.

3.2. Sparse array extension with the fourth-order difference co-
array enhancement

To fully exploit the advantages of the fourth-order difference co-
array, a novel Sparse Array extension with the Fourth-Order dif-
ference co-array Enhancement based on the TL-NA (SAFOE-NA)
is proposed, optimising the consecutive integers at the fourth-order
difference co-array stage with each introduced physical sensor of the
third sub-array.

Define the sensor positions of the introduced third sub-array as
αn3d, 0 ≤ n3 ≤ N3 − 1, where N3 is the sensor number of the
third sub-array. Since the co-array lags at each order are symmetric
about 0, our analysis only takes the positive part into consideration.
In the set ΦA, except for the self-difference co-array of the third sub-
array, the minimum and the maximum positive integers for the cross-
difference co-array associated with the n3-th sensor at position αn3d
can be expressed as αn3 −N2(N1 + 1) and αn3 − 1, respectively.
It is noted that the difference between the mentioned minimum and
maximum positive integers is the physical array aperture.

According to (13), the range of consecutive integers at the
fourth-order difference co-array stage associated with the n3-th
sensor can be obtained, given in the set ϕαn3

ϕαn3
= {µ, νn3 ≤ µ ≤ ζn3} , (16)
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where

νn3 = αn3 − 2N2(N1 + 1) + 1 ,

ζn3 = αn3 +N2(N1 + 1)− 2 .
(17)

For the starting position α0d, in order to ensure the covered
range by the starting position to be adjacent to the fourth-order dif-
ference co-array range of the standard TL-NA structure, the lower
bound ν0 should be the maximum integer in (15) plus 1, given as

ν0 = α0 − 2N2(N1 + 1) + 1

= 2N2(N1 + 1)− 2 + 1 ,
(18)

and then we obtain the starting position of the third sub-array

α0 = 4N2(N1 + 1)− 2 . (19)

For the remaining sensors in the third sub-array, to maximise
the number of consecutive co-array lags, the covered ranges ϕαn3

,
n3 = 0, 1, . . . , N3 − 1, should be adjacent to each other, expressed
as

νn3 = ζn3−1 + 1, 1 ≤ n3 ≤ N3 − 1 . (20)

Then the inter-element spacing is obtained by

αn3 − αn3−1 = 3N2(N1 + 1)− 2 . (21)

According to (19) and (21), the third sub-array is also a uniform
linear sub-array with the starting position of

[
4N2(N1 + 1) − 2

]
d

and the inter-element spacing
[
3N2(N1 + 1)− 2

]
d. The maximum

integer of the fourth-order difference co-array lag νN3−1 = (3N3 +
2)N2(N1 +1)− 2N3 − 2. Finally, we have designed a sparse array
structure by extending the TL-NA, with the set of the fourth-order
difference co-array lags ΦB updated to

ΦB = {µ,−M0 ≤ µ ≤ M0} , (22)

where M0 = (3N3 +2)N2(N1 +1)− 2N3 − 2, and the number of
consecutive lags is 2M0 + 1.

The inter-element spacing of the third sub-array in our proposed
SAFOE-NA is

[
3N2(N1+1)−2

]
d. This larger inter-element spac-

ing is due to exploration of the physical aperture and the symmetric
information at the second-order difference co-array stage, which is
not exploited in the design of the FL-NA in [19]. In fact, this inter-
element spacing

[
3N2(N1+1)−2

]
d can be considered as the origi-

nal physical aperture N2(N1+1)−1 plus the number of consecutive
lags at the difference co-array stage 2N2(N1 + 1)− 1.

3.3. Comparison between different structures

For a FL-NA with N =
∑4

m=1 Nm+1 physical sensors, the number
of consecutive lags at the fourth-order difference co-array stage is
roughly [19]

2
∏4

m=1
(Nm + 1)− 1 . (23)

By applying the Arithmetic Mean-Geometric Mean (AM-GM)
inequality, the maximum value in (23) is achieved when Nm =
N−1

4
, 1 ≤ m ≤ 4. Then, (23) can be updated to

2
(
N+3

4

)4 − 1 . (24)

Table 1. Comparison of the Fourth-Order Difference Co-Array Lags
Structures Number of Sensors Number of Consecutive Lags

TL-NA N1 +N2 4N2(N1 + 1)− 3

FL-NA N =
∑4

m=1 Nm+1 2
∏4

m=1(Nm + 1)− 1

SAFOE-NA N =
∑3

m=1 Nm 2M0 + 1†

Array
Structures

(N1, N2),
(N1, N2, N3, N4)
or (N1, N2, N3)

Number of
Sensors

Number of
Consecutive Lags

TL-NA (2,3) 5 33

FL-NA (1,1,1,1) 5 31

SAFOE-NA (1,2,2) 5 53

TL-NA (8,9) 17 321

FL-NA (4,4,4,4) 17 1249

SAFOE-NA (5,6,6) 17 1413

TL-NA (10,11) 21 481

FL-NA (5,5,5,5) 21 2591

SAFOE-NA (7,7,7) 21 2545

† M0 = (3N3 + 2)N2(N1 + 1)− 2N3 − 2.

In our proposed SAFOE-NA, the number of consecutive lags at
the fourth-order difference co-array stage is 2M0 + 1, where

M0 = (3N3 + 2)N2(N1 + 1)− 2N3 − 2

= 3(N3 +
2
3
)N2(N1 + 1)− 2N3 − 2 .

(25)

Since Nm ≥ 1, 1 ≤ m ≤ 3, the second term 2N3 is much
smaller than the first term (3N3 +2)N2(N1 +1) in (25), especially
when Nm becomes larger. For a simple comparison, we consider
maximising the first term in M0 to achieve the maximum number of
consecutive lags. By applying the AM-GM inequality, the maximum
value Mmax is obtained when (N3 +

2
3
) = N2 = (N1 + 1), with

Mmax = 3

(
N + 5

3

3

)3

− 2

(
N

3
− 1

9

)
− 2 . (26)

Note that all Nm, 1 ≤ m ≤ 4, should be real positive inte-
gers in practice. Equations (24) and (26) are only used to compare
the potential maximum values with respect to N . We compare the
maximum consecutive lags by solving the following formulation

2
(
N+3

4

)4 − 1− (2Mmax + 1) ≤ 0 . (27)

The solution to (27) corresponds to the range of sensor numbers
in which more DOFs can be provided by our proposed structure than
the FL-NA. Note N is a positive integer. Then the solution can be
obtained as

1.3739 ≤ N ≤ 20.6100 . (28)

To ensure there are four sub-arrays in a FL-NA, N should be
greater than 4. Therefore, for N ≤ 20, our proposed structure can
provide more DOFs than the FL-NA. The comparison of consecutive
integers are listed in Table. 1. Furthermore, for 20 physical sensors
with (N1, N2, N3) = (6, 7, 7) for our proposed structure, the num-
ber of virtual ULA sensors at the fourth-order difference co-array
stage is 2223, which is sufficient for most applications. On the other
hand, compared to the TL-NA, our extended structure always gives
a significantly larger number of DOFs.
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(a) DOA estimation results for the
two-level nested array.
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(b) DOA estimation results for the
four-level nested array.
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(c) DOA estimation results for our proposed
structure.

Fig. 1. DOA estimation results for different array structures with
K = 22.

3.4. Compressive sensing based DOA estimation employing the
fourth-order difference co-array concept

Apart from spatial smoothing based sub-space method, CS-based
method can be applied to (8) for DOA estimation. With a search grid
of Kg potential incident angles θg,0, . . . , θg,Kg−1, a steering matrix
can be constructed as Bg =

[
b(θg,0), . . . ,b(θg,Kg−1)

]
. Then a

column vector ug of size Kg × 1 is constructed, with each entry
representing a potential source signal at the corresponding incident
angle. Then the CS-based DOA estimation employing the fourth-
order difference co-array concept is formulated as

min ∥ug∥1 subject to ∥y −Bgug∥2 ≤ ε , (29)

where ε is the allowable error bound, ∥·∥1 is the ℓ1 norm and ∥·∥2
the ℓ2 norm. The Kg × 1 column vector ug represents the DOA
estimation results over Kg search grids. The optimization problem
can be solved using CVX, a software package for specifying and
solving convex problems [20, 21].

4. SIMULATION RESULTS

In our simulations, we consider examples with a small num-
ber of sensors: (N1, N2) = (2, 3) for the standard TL-NA,
(N1, N2, N3, N4) = (1, 1, 1, 1) for the FL-NA with

∑4
m=1 Nm +

1 = 5 sensors, and (N1, N2, N3) = (1, 2, 2) for our proposed
extended structure SAFOE-NA. The unit spacing d = λ/2, where λ
is the signal wavelength. With a step size of 0.05◦, a search grid of
Kg = 3601 incident angles is generated within the full angle range
from −90◦ to 90◦. The allowable error bound ε is chosen to give
the best results through trial-and-error for each scenario, and all the
K source signals are uniformly distributed between −60◦ and 60◦.
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(a) RMSEs with different array struc-
tures versus input SNR.

0.5 0.75 1 1.25 1.5 1.75 2

x 10
4

0.2

0.4

0.6

0.8

1

1.2

Number of Snapshots

E
st

im
at

io
n 

E
rr

or
: d

eg
re

e

 

 

TL−NA
FL−NA
SAFOE−NA

(b) RMSEs with different array struc-
tures versus the number of snapshots.

Fig. 2. RMSE results with different array structures.

For the first set of simulations, the SNR is set to be 0 dB. To
show the number of distinguishable sources, a sufficient number of
snapshots for calculating the fourth-order cumulant matrix is used,
fixed at 20000, and the number of sources K = 22. The DOA
estimation results for difference array structures are shown in Fig.
1, where the dotted lines represent the actual incident angles of the
impinging signals, whereas the solid lines represent the estimation
results. With the same number of physical sensors, it is clear that
both TL-NA and FL-NA have failed in resolving all these sources,
while the proposed SAFOE-NA has achieved it successfully.

In the second set of simulations, we focus on the root mean
square error (RMSE) results to compare the estimation accuracy of
different array structures through Monte Carlo simulations of 500
trials. The number of sources K is 12. Fig. 2(a) gives the results
with respect to a varied input SNR, where the number of snapshots
is fixed at 10000. Clearly, the performance of our proposed array
extension is the best among all the three structures, with that of the
TL-NA being the worst. It is noted that the physical array aperture
for the proposed structure is 23d, while it is 15d for the FL-NA and
8d for the TL-NA. With the largest aperture, the proposed structure
has consistently outperformed the other two existing ones.

Then, we fix the SNR to 0 dB, and the RMSE results versus
different number of snapshots are shown in Fig. 2(b). We can see
that, the larger the number of snapshots, the higher its estimation
accuracy due to a better estimation of the statistics of the involved
signals. Similarly, the performance of the proposed structure is still
the best among all the three structures due to its larger aperture.

5. CONCLUSION

A sparse array extension based on the standard two-level nested
array has been proposed to maximise the consecutive lags in the
fourth-order difference co-array. After vectorizing the fourth-order
cumulant matrix, a CS-based signal reconstruction method is then
employed for effective DOA estimation. Given the same number of
sensors, the number of consecutive lags and DOFs of the new struc-
ture is significantly larger than the existing two-level nested arrays;
compared to the existing four-level nested arrays, when the sensor
number is smaller than 21, the new structure also provides a larger
number of consecutive lags (2223 for 20 sensors), which is suffi-
cient for most applications. Moreover, it can be shown that among
the three different structures, the proposed one has the largest aper-
ture, leading to further improved performance.
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