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ABSTRACT

In this paper, we propose a novel robust adaptive beamform-
ing algorithm with direction-of-arrival (DOA) support for the
coprime array. Specifically, by using the property of coprime
number, we may estimate the DOAs of sources by matching
two super-resolution spatial spectra of the pair of decomposed
coprime subarrays. After that, the power of each source can
be estimated via a covariance matrix joint estimation prob-
lem corresponding to the pair of decomposed coprime sub-
arrays. Taking the estimated DOAs and their corresponding
power as the support information, the interference-plus-noise
covariance matrix for the coprime array can be reconstruct-
ed, from which the minimum variance distortionless response
beamformer weight vector can be calculated. Simulation re-
sults show that the proposed adaptive beamforming algorithm
is more robust to signal look direction mismatch than the ex-
isting algorithms.

Index Terms— Coprime array, direction-of-arrival (DOA),
joint estimation, robust adaptive beamforming.

1. INTRODUCTION

Compared with fixed beamforming and switch beamforming,
adaptive beamforming can provide better resolution and much
better interference suppression capability by calculating the
beamforming weight from the array received signal. Hence,
it has been widely applied in radar, sonar, acoustics, seis-
mology, speech processing, wireless communications, and
so on [1–7]. However, adaptive beamformers are also well
known to be sensitive to model mismatch, especially when
the training samples are contaminated by the desired signal.
To reduce the sensitivity of adaptive beamformers, many ro-
bust algorithms were proposed in the past decades [8–12].
Among them, the recently proposed interference covariance
matrix reconstruction-based adaptive beamforming algorith-
m [11, 12] performs much better than others. In spite of this,

This work was partially supported by Zhejiang Province Commonweal
Technique Research Project (No. 2014C33103), Zhejiang Provincial Natu-
ral Science Foundation of China (No. LR16F010002), NSF-1066391, NSF-
1442630, NSF-1125165, and NSF-1303359.

the existing adaptive beamfoming algorithms were mainly
designed for the uniform linear array (ULA).

More recently, the emergence of coprime sampling [13],
which utilizes a pair of coprime factors to undersample the
signal, attracts the research interests of researchers. Among
them, coprime array is a typical application of coprime sam-
pling, where a large array aperture can be obtained by using
far fewer antennas. However, existing researches on coprime
array mainly focus on improving the degree-of-freedom (D-
OF) to estimate more sources than the actual physical anten-
nas [14–18]. Up to now, there is few research on adaptive
beamforming specially for the coprime array.

In this paper, we propose a novel adaptive beamform-
ing algorithm based on DOA support for the coprime array,
which is especially robust against signal look direction mis-
match. Instead of generating a virtual ULA, we use the pair
of decomposed coprime subarrays separately to reduce the
computational complexity as we did in [19]. By exploiting
the property of coprime number, the DOAs of sources can
be estimated by matching two super-resolution spatial spec-
tra of the pair of decomposed coprime subarrays. With the
estimated DOAs, the source power can be subsequently esti-
mated by solving a covariance matrix joint estimation prob-
lem. With the estimated DOA of the desired signal and the
reconstructed interference-plus-noise covariance matrix, the
adaptive beamforming weight vector can be readily calculat-
ed following minimum variance distortionless response (MV-
DR) principle. Numerical examples show the effectiveness
and robustness of the proposed adaptive beamforming algo-
rithm for the coprime array.

2. COPRIME ARRAY SIGNAL MODEL

The coprime array consists of two sparsely-spaced uniform
linear subarrays withM andN physical sensors, respectively,
where M and N are coprime numbers. In detail, the sensors
of the first subarray locate at

{
0, Nd, 2Nd, · · · , (M−1)Nd

}
with the inter-element spaceNd, while the sensors of the sec-
ond subarray locate at

{
0,Md, 2Md, · · · , (N −1)Md

}
with

the inter-element space Md, where d is generally chosen to
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be a half-wavelength. According to the property of coprime
number, the pair of sparse uniform linear subarrays does not
overlap other than the first sensor. Hence, the coprime array
has the aperture ofmax

(
(M−1)Nd, (N−1)Md

)
with only

M +N − 1 physical sensors.
The coprime array received signal at time k can be mod-

eled as
x(k) = a(θs)s(k) + i(k) + n(k), (1)

where s(k) is the desired signal waveform and a(θs) ∈
CM+N−1 is the corresponding steering vector with DOA θs,
i(k) and n(k) are the statistically independent interference
component and noise component, respectively.

The coprime array output is given by

y(k) = wHx(k) (2)

with a designed beamforming weight vector w ∈ CM+N−1,
where (·)H denotes the Hermitian transpose. Among various
beamforming criteria, the output signal-to-interference-plus-
noise ratio (SINR) maximization

max
w

σ2
s

∣∣wHa(θs)
∣∣2

wHRi+nw
(3)

is the most popular one, where σ2
s = E

{
|s(k)|2

}
denotes the

signal power, Ri+n = E
{(

i(k) + n(k)
)(

i(k) + n(k)
)H}

∈
C(M+N−1)×(M+N−1) denotes the interference-plus-noise
covariance matrix. Here, E{·} denotes the expectation oper-
ator. The output SINR maximization problem defined in (3)
is equivalent to the MVDR problem [20] as

min
w

wHRi+nw subject to wHa(θs) = 1, (4)

which solution

w =
R−1
i+na(θs)

aH(θs)R−1
i+na(θs)

(5)

is also known as the Capon beamformer. Since Ri+n is un-
available in practice, it is usually replaced by the sample co-
variance matrix

R̂ =
1

K

K∑
k=1

x(k)xH(k), (6)

where K denotes the number of snapshots.
Note that the proportion of the desired signal compo-

nent becomes larger with the increase of signal-to-noise
ratio (SNR), which will lead to severe signal self-nulling
phenomenon especially at high SNRs. In addition, the perfor-
mance of adaptive beamformer is also sensitive to the DOA
estimation of desired signal.

3. THE PROPOSED ALGORITHM

In this section, a novel adaptive beamforming algorithm based
on DOA support is proposed for the coprime array. Since the
estimation resolution is proportional to the array aperture, we
take advantage of large array aperture provided by coprime
array for DOA estimation.

Considering the pair of sparse uniform linear subarrays
separately, the received signals of the decomposed coprime
subarrays are given by

xM (k) = aM (θs)s(k) + iM (k) + nM (k)

xN (k) = aN (θs)s(k) + iN (k) + nN (k), (7)

where

aM (θs) = [1, e−ȷπN sin(θs), · · · , e−ȷπ(M−1)N sin(θs)]T

aN (θs) = [1, e−ȷπM sin(θs), · · · , e−ȷπ(N−1)M sin(θs)]T

denote the steering vectors of the desired signal correspond-
ing to the pair of decomposed coprime subarrays. Corre-
spondingly, the sample covariance matrix of each subarray
can be calculated as R̂M = 1

K

∑K
k=1 xM (k)xHM (k) and

R̂N = 1
K

∑K
k=1 xN (k)xHN (k), respectively.

Due to its super-resolution property, the multiple sig-
nal classification (MUSIC) algorithm [21–23] is adopted to
estimate the DOAs as the support information for the pro-
posed adaptive beamforming algorithm. The MUSIC spatial
pseudo-spectra of the pair of decomposed coprime subarrays
are given by

PM (θ) =
1

aHM (θ)EMEHMaM (θ)

PN (θ) =
1

aHN (θ)ENEHNaN (θ)
, (8)

where θ ∈ [−π/2, π/2) denotes the hypothetical direction,
EM and EN denote the noise subspaces corresponding to the
pair of decomposed coprime subarrays, respectively.

Since the inter-element spaces of both decomposed co-
prime subarrays are much larger than a half-wavelength,
phase ambiguity will appear in the MUSIC spectra PM and
PN . Hence, we can obtain the candidate DOA estimation-
s {θMi , i = 1, 2, · · · , DM} and {θNj , j = 1, 2, · · · , DN}
by searching for the peaks of the pair of spectra. Note that
DM and DN denote the number of peaks, which include the
DOAs of the desired signal, interferences, and their phase
ambiguities. For the purpose of distinguishing the DOAs of
these sources from their phase ambiguities, we proposed a
Theorem [19]: Suppose ϕ is a DOA of the desired signal
or interferences, there exists and uniquely exists a ϕ̂ that
presents a peak in both MUSIC spectra PM and PN , and ϕ̂ is
the DOA estimation of decomposed coprime subarrays.

The existence and uniqueness of the estimated DOA ϕ̂ has
been proved in [19]. However, it is hard to get the perfect u-
nique directions from {θMi} and {θNj} even under relatively
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min
Λ

∥∥∥∥∥
[

R̂M 0

0 R̂N

]
−

[
AM (θ̂) 0

0 AN (θ̂)

] [
Λ 0
0 Λ

] [
AHM (θ̂) 0

0 AHN (θ̂)

]
−
[
σ̂2
nM IM 0
0 σ̂2

nN IN

] ∥∥∥∥∥
2

F

subject to Λ ≽ 0,

(13)

ideal conditions. Hence, instead of searching for the com-
pletely overlapped peaks, we will estimate the DOA of de-
sired signal by searching for the nearest peaks in PM and PN
within the desired signal angular region Θ as

min
θMi

,θNj

∣∣θMi − θNj

∣∣ , ∀ θMi , θNj ∈ Θ. (9)

Hence, the DOA of desired signal can be estimated as θ̂s =
θMi

+θNi

2 , namely, the mean of θMi and θNj minimizing the
objective in (9). Based on this estimation, the steering vector
of desired signal can be calculated as

a(θ̂s) = [1, e−ȷπu2 sin(θ̂s), · · · , e−ȷπuM+N−1 sin(θ̂s)]T , (10)

where ui, i = 2, · · · ,M +N − 1 denotes the physical sensor
positions in the coprime array.

Similarly, we can estimate the DOAs of interferences by

min
θMi

,θNj

∣∣θMi
− θNj

∣∣ < ξ, ∀ θMi
, θNj

∈ Θ̄, (11)

where Θ̄ is the complementary set of Θ, and hence, it covers
the angular region containing all interferences. Here, ξ de-
notes the resolution threshold that determines the estimation
of interferences in Θ̄ since the number of interferences is a
priori unknown in practice. The estimated DOAs of interfer-
ences from (11) can be denoted as ψ = [ψ1, ψ2, · · · , ψQ]T ,
where Q denotes the number of estimated interferences.

When the interferences and noise are statistically indepen-
dent, the interference-plus-noise covariance matrix Ri+n can
be simplified as

Ri+n =

Q∑
q=1

σ2
ψq

a(ψq)aH(ψq) + σ2
nI, (12)

where σ2
ψq

and σ2
n denote the power of the interference with

DOA ψq and noise, respectively, and I denotes the identi-
ty matrix. By observing (12), we can see that the power of
all interferences corresponding to the estimated DOAs in ψ
is also required to reconstruct the interference-plus-noise co-
variance matrix. However, although it has a super-resolution
capability, the MUSIC spectrum belongs to a kind of spatial
pseudo-spectra. That is to say, we cannot obtain the power of
each estimated source from the MUSIC spectrum directly.

To solve this problem, we will estimate the power of
each estimated source based on the idea of covariance ma-
trix joint estimation. Specifically, considering that the power

of the desired signal and interferences received by the pair
of decomposed coprime subarrays is identical, we can es-
timate their power by minimizing the difference of these
two sample covariance matrices R̂M and R̂N with their
corresponding theoretical covariance matrices jointly. The
proposed covariance matrix joint estimation problem is
formulated in (13), shown at the top of this page, where
θ̂ = [θ̂s, ψ1, ψ2, · · · , ψQ]T contains the estimated DOAs of
the sources, AM (θ̂) ∈ CM×(Q+1) and AN (θ̂) ∈ CN×(Q+1)

denote the steering matrices of the pair of decomposed co-
prime subarrays, Λ = diag

(
[σ2
s , σ

2
ψ1
, σ2
ψ2
, · · · , σ2

ψQ
]
)

con-
tains the power of sources, σ̂2

nM and σ̂2
nN denote the noise

power of the pair of subarrays approximately estimated by
the minimum eigenvalue of R̂M and R̂N , respectively, and 0
denotes the zero matrix of appropriate dimension.

The above covariance matrix joint estimation problem be-
longs to a least-squares problem, which can be efficiently
solved by

diag(Λ̂) =
[
CHC

]−1CHv, (14)

where

C =

[
vec

([
aM (θ̂s)a

H
M (θ̂s) 0

0 aN (θ̂s)a
H
N (θ̂s)

])
, · · · ,

vec
([

aM (ψQ)aHM (ψQ) 0
0 aN (ψQ)aHN (ψQ)

])]
,

v = vec
([

R̂M − σ̂2
nM IM 0

0 R̂N − σ̂2
nN IN

])
.

Based on the estimated DOAs of interferencesψ and their
power diag(Λ̂), the interference-plus-noise covariance matrix
can be reconstructed as

R̃i+n =

Q∑
q=1

σ̂2
ψq

a(ψq)aH(ψq) + σ̂2
nI, (15)

where σ̂2
n can be chosen as the mean of σ̂2

nM and σ̂2
nN .

Substituting the estimated steering vector a(θ̂s) (10) and
the reconstructed interference-plus-noise covariance matrix
R̃i+n (15) into (5) together, the proposed adaptive beamform-
ing weight vector can be calculated as

w̃ =
R̃

−1

i+na(θ̂s)

aH(θ̂s)R̃
−1

i+na(θ̂s)
. (16)
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Fig. 1. Performance comparison. (a) Output SINR versus input SNR; (b) Output SINR versus number of snapshots.

Similarly to [12], instead of integrating over the whole
interference angular region Θ̄ as in [11], the proposed beam-
forming algorithm only calculates the interferences in the
finite set ψ for reconstructing the interference-plus-noise
covariance matrix, and has the computational complexity
O
(
(M2 + N2)L

)
, where L ≫ M + N denotes the number

of hypothetical directions in (8). Compared to [12] whose
computational complexity is O

(
(M + N)2L

)
, the proposed

beamforming algorithm has lower computational complexity
since the received signal is processed by a pair of decomposed
coprime subarrays separately.

4. SIMULATION RESULTS

In our simulations, the coprime array structure is placed with
the coprime factor M = 6 and N = 5, which means the co-
prime array actually consists of M + N − 1 = 10 physical
sensors. It is assumed that the desired signal is a narrowband
plane-wave with DOA θs = 5◦, and two interferences are
from −10◦ and 20◦. The interference-to-noise ratio (INR) in
each sensor is set to be 30 dB, and the noise is a zero-mean
additive white Gaussian process. The influence of signal look
direction mismatch is considered, where both the desired sig-
nal and interferences have a random DOA mismatch uniform-
ly distributed in [−4◦, 4◦] from trial to trial. For each scenari-
o, 1,000 Monte-Carlo trials are run.

The proposed beamformer (16) is compared to the SMI
beamformer [20], the DLSMI beamformer [24], the worst-
case beamformer [9], and the reconstruction-based beam-
former [11]. In the reconstruction-based beamformer and the
proposed beamformer, we assume the angular region where
the desired signal located in is Θ = [0◦, 10◦], and hence,
Θ̄ = [−90◦, 0◦) ∪ (10◦, 90◦]. The grid of the hypotheti-
cal direction in (8) is chosen to be 0.1◦, and the resolution

threshold ξ in (11) is set to be double the grid. The norm up-
per bound of the steering vector mismatch is set to be ε = 3 in
the worst-case beamformer, and the diagonal loading factor
is chosen to be 10σ2

n in the DLSMI beamformer.
The output SINR performance versus input SNR is de-

picted in Fig. 1(a) with the number of snapshots K = 50. It
is obvious that the performance of the proposed beamformer
is better than the others, especially when SNR is high. In
Fig. 1(b), the output SINR performance comparison is illus-
trated against the number of snapshots, where the input SNR
is fixed at 10 dB. It is clear that the proposed beamforming
algorithm converges faster than others. Benefit from the large
array aperture of decomposed coprime subarrays, more ac-
curate DOA estimation can be achieved while the phase am-
biguities caused by the sparse sensor position can be effec-
tively removed according to the property of coprime number.
Moreover, power estimation is performed for each estimated
source. Therefore, the proposed adaptive beamforming algo-
rithm enjoys better output SINR performance than others.

5. CONCLUSION

Compared to the ULA, coprime array can provide the same
array aperture with far fewer physical sensors. In this pa-
per, we proposed a novel adaptive beamforming algorithm
based on DOA support for the coprime array. By matching
two MUSIC spatial spectra of the pair of decomposed co-
prime subarrays, we can estimate the source DOAs, which
can be subsequently used to estimate their power by solving
a covariance matrix joint estimation problem. With the re-
constructed interference-plus-noise covariance matrix and the
estimated DOA of desired signal, the MVDR-based adaptive
beamformer is presented. Simulation results demonstrate the
robustness of the proposed adaptive beamforming algorithm.
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