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ABSTRACT

In this paper, we propose a novel adaptive beamforming al-
gorithm for coprime array by compressive sensing the virtual
uniform linear array signal. Based on the idea of coprime
sampling, a much longer virtual uniform linear array can be
generated from a coprime array. With a compressive sens-
ing matrix, a connection can be built between the coprime ar-
ray with fewer physical sensors and the virtual uniform linear
array with much more virtual sensors. Hence, the proposed
adaptive beamforming algorithm takes full advantage of the
longer virtual array. The performance increment provided
by the virtual array is much larger than the performance loss
due to the introduced compressive sensing. Hence, the beam-
former using the virtual array is expected to obtain much bet-
ter performance than those using the coprime array directly.
Simulation results demonstrate the effectiveness of the pro-
posed adaptive beamforming algorithm.

Index Terms— Adaptive beamforming, compressive
sensing, coprime array, virtual array.

1. INTRODUCTION

Coprime sampling utilizes a pair of coprime factors to under-
sample the signal, and its sparse characteristic is expected to
be found broad applications in system identification, target lo-
cation, urban radar processing and seismic imaging, etc [1–6].
More recently, coprime array was proposed as a typical imple-
mentation of coprime sampling, although it is a de facto spe-
cial sparse array. Based on the property of coprime number,
a much longer virtual linear array can be obtained by deriv-
ing the difference coarray of a coprime array [7]. Generally
speaking, longer array means higher resolution and stronger
interference suppression capability. For this reason, coprime
array has found wide applications and a series of research re-
sults have been reported in the past years [7–16].
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However, most existing researches were focused on tak-
ing the advantages of increased degrees-of-freedom (DOF)
provided by the generated virtual uniform linear array for
direction-of-arrival (DOA) estimation. To the best of our
knowledge, few efforts have been put on adaptive beamform-
ing research specially for the coprime array. Since coprime
array is a kind of sparse non-uniform linear array, it will
suffer performance degradation by directly using the adap-
tive beamforming algorithms designed for the general array.
Therefore, how to design an adaptive beamforming algorithm
for the coprime array remains a challenging task.

Motivated by the compressive sensing applications in
radar and array signal processing [17–21], in this paper, we
propose a novel adaptive beamforming algorithm for the co-
prime array by compressive sensing virtual array signal. In
detail, a compressive sensing kernel, whose dimension is
determined by the given coprime array structure, is created
to compress the virtual array signal by a random projection.
With such a compressive sensing matrix, the connection be-
tween the original coprime array and the generated virtual
array is built. By calculating the compressed virtual covari-
ance matrix via spatial smoothing, the adaptive beamformer
corresponding to the coprime array can be obtained. The
performance increment provided by the virtual array is much
larger than the performance loss due to the introduced com-
pressive sensing. Hence, the proposed adaptive beamforming
algorithm via compressive sensing the virtual array will be
better than those directly obtained from the coprime array.
Simulation results demonstrate the effectiveness of the pro-
posed adaptive beamforming algorithm specially designed
for the coprime array.

2. COPRIME ARRAY SIGNAL MODEL

We consider a pair of sparsely-spaced uniform linear arrays
illustrated in Fig. 1(a). The first array has 2M sensors s-
paced Nd apart, and the second array has N sensors spaced
Md apart, where M and N are coprime numbers satisfying
M < N . Without loss of generality, d is chosen to be a half-
wavelength. According to the property of coprime number,
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Fig. 1. The coprime array structure.

the sensors of each array do not overlap except the first one
served as the reference when these two arrays are aligned, as
shown in Fig. 1(b). Hence, the coprime array actually con-
sists of 2M +N − 1 physical sensors.

Based on the above (2M,N) coprime array structure, a
virtual uniform linear array can be generated by calculating
the difference coarray [8]

L(m,n) = ±(Mn−Nm), (1)

with 0 ≤ m ≤ 2M − 1 and 0 ≤ n ≤ N − 1, where a set
of consecutive integers from −MN to MN can be obtained
in L(m,n). Therefore, a much longer virtual uniform lin-
ear array can be generated at locations {−MNd,−(MN −
1)d, · · · , 0, · · · , (MN − 1)d,MNd}. The generated virtu-
al uniform linear array can be used to process the incident
signal with far fewer physical sensors, and its computational
efficiency is significantly improved as compared to that using
actual uniform linear array of the same size.

However, the beamforming weight vector is actually
weighted to the physical sensors of coprime array instead
of to the virtual sensors of virtual array. That is to say, the
beamformer output of coprime array is still given by

y(k) = wHx(k), (2)

where w ∈ C2M+N−1 is the beamforming weight vector,
x(k) ∈ C2M+N−1 is the coprime array observation vector
at time k, and (·)H is the Hermitian transpose. The array ob-
servation vector x(k) can be modeled as

x(k) = xs(k) + xi(k) + xn(k), (3)

where xs = a(θs)s(k), xi(k) and xn(k) are the desired signal,
interference and noise, respectively. These components are
assumed to be statistically independent to each other. Here,
a(θs) ∈ C2M+N−1 is the coprime array steering vector of the
desired signal waveform s(k) from the direction θs.

The coprime array output signal-to-interference-plus-
noise ratio (SINR) is defined as

SINR =
σ2
s

∣∣wHa(θs)
∣∣2

wHRi+nw
, (4)

where Ri+n = E
{(

xi(k) + xn(k)
)(

xi(k) + xn(k)
)H}

∈
C(2M+N−1)×(2M+N−1) is the interference-plus-noise co-
variance matrix, and σ2

s is the desired signal power. Maxi-
mizing the output SINR (4) is equivalent to minimizing the
output variance while keeping the desired signal distortion-
less pass as

min
w

wHRi+nw subject to wHa(θs) = 1, (5)

which solution

w =
R−1

i+na(θs)
aH(θs)R−1

i+na(θs)
(6)

is the so-called MVDR beamformer. In the practical applica-
tions, the sample covariance matrix

R̂ =
1

K

K∑
k=1

x(k)xH(k) (7)

is usually adopted because the exact Ri+n is not available,
where K is the number of snapshots. The resulted adaptive
beamformer is called as the sample matrix inversion (SMI)
beamformer.

3. THE PROPOSED ALGORITHM

In this section, a novel adaptive beamforming algorithm spe-
cially for the coprime array is proposed. The basic idea is to
compressively sample the longer virtual uniform linear array
by random projection, and then the sample compressed virtual
covariance matrix can be calculated by using spatial smooth-
ing. With the compressed virtual steering vector together, the
MVDR adaptive beamformer is presented.

In order to obtain the equivalent received signal vector
of the virtual array, we first vectorize the sample covariance
matrix R̂ in (7) as [8]

r = vec(R̂) = Vp + σ2
nvec(I), (8)

where V =
[
a∗(θs) ⊗ a(θs), a∗(φ1) ⊗ a(φ1), · · · , a∗(φq) ⊗

a(φq)
]
∈ C(2M+N−1)2×(q+1), p = [σ2

s , σ
2
1 , · · · , σ2

q ]
T con-

sists of the power of the sources with DOAs {θs, φ1, · · · , φq},
σ2
n is the noise power, and I is the identity matrix. Here, the

vectorization operator vec(·) stacks each column of the matrix
one after another. With such a vectorization, the vector r is
equivalent to the received signal of the array which geometry
is given by the steering matrix V.
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By removing the repeated rows in V and sorting them, a
(2MN + 1) × (q + 1) dimensional matrix V̄ is generated
corresponding to the virtual uniform linear array generated
by coprime array, which the j-th row is corresponding to the
sensor located at (−MN − 1 + j)d. In the sequel, we divide
these 2MN + 1 sensors into MN + 1 overlapped subarrays,
each of which consists of MN +1 sensors. The i-th subarray
with MN + 1 sensors located at {(−i + 1 + g)d, 0 ≤ g ≤
MN} gives a new vector as

z̄i = V̄ip + σ2
nĪi, (9)

where V̄i ∈ C(MN+1)×(q+1) is the steering matrix corre-
sponding to the (MN +2− i)-th through (2MN +2− i)-th
rows of V̄i, and Īi is a zero vector except an element 1 at i-th
position. In such a case, z̄i is the received signal vector of
the i-th subarray, and now, the signal can be considered to be
processed by a virtual array.

However, when using the adaptive beamforming tech-
nique, the optimized beamforming weight vector is weighted
to the received signal vector of the coprime array instead of
that of the virtual array. Hence, we consider to compressive-
ly sample the virtual array signal vector z̄i ∈ CMN+1 via
a compressive sensing kernel Φ ∈ C(2M+N−1)×(MN+1),
which connects the coprime array with 2M +N − 1 physical
sensors and the virtual array with MN + 1 virtual sensors.
Then, the compressive measurement is given by

z̄c
i = Φz̄i, (10)

where the compressive sensing kernel Φ can be chosen as a
random one, such as Gaussian or Bernoulli kernels. The ran-
dom compressive sensing kernel meets the incoherence re-
quirement in the compressive sensing theory [22]. With such
a random projection, the longer virtual array signal vectors
{z̄i ∈ C(MN+1), i = 1, · · · ,MN + 1} are compressed to
a set of low-dimensional vectors {z̄c

i ∈ C(2M+N−1), i =
1, · · · ,MN +1}, which now can be used for spatial smooth-
ing.

By averaging over the covariance matrices of the MN +
1 subarrays, the spatially smoothed compressed covariance
matrix yields

Rs =
1

MN + 1

MN+1∑
i=1

z̄c
i z̄

cH
i , (11)

which can be further expressed as

Rs = R̂
2

c , (12)

where R̂c ∈ C(2M+N−1)×(2M+N−1) is the sample com-
pressed virtual covariance matrix. Compared with the sample
covariance matrix R̂ in (7) which is directly calculated from
the coprime array received signal {x(k), k = 1, · · · ,K}, the
sample compressed virtual covariance matrix R̂c in (12) is

calculated from the compressed virtual array received signal
{z̄c

i, i = 1, · · · ,MN + 1}. The benefit from the longer vir-
tual array is enough to compensate the performance loss due
to compressive sensing. Hence, more performance advan-
tage can be obtained by using the sample compressed virtual
covariance matrix R̂c than the sample covariance matrix R̂.

Similarly, the virtual array steering vector of the desired
signal v̄(θs) ∈ CMN+1, the corresponding column of V̄i in
(9), should also be compressed by the same compressive sens-
ing kernel Φ as

b(θs) = Φv̄(θs), (13)

where b(θs) ∈ C2M+N−1 has the same dimension as the co-
prime array steering vector. Without loss of generality, a vir-
tual array with the sensors located at {0, d, 2d, · · · ,MNd} is
adopted to calculate the virtual array steering vector v̄(θs).

Based on the compressed virtual uniform linear array, the
output SINR defined in (4) can be rewritten as

SINRc =
σ2
s

∣∣wHΦv̄(θs)
∣∣2

wHRc
i+nw

, (14)

where Rc
i+n =

∑Q
q=1 σ

2
qΦv̄(φq)v̄H(φq)Φ

H+σ2
nΦΦH is the

theoretical compressed virtual interference-plus-noise covari-
ance matrix. It is usually unavailable, and can be replaced by
the sample compressed virtual covariance matrix R̂c in (12).
Following the MVDR beamforming principle, the proposed
adaptive beamforming weight vector is given by

wc =
R̂

−1

c Φv̄(θs)

v̄H(θs)Φ
HR̂

−1

c Φv̄(θs)
. (15)

Unlike the MVDR beamformer in (6) for the general ar-
ray, the proposed adaptive beamfomer is specially designed
for the coprime array, where extra information can be ob-
tained from a longer virtual uniform linear array. Meanwhile,
the designed beamformer weight vector wc is weighted to
the physical sensors in coprime array instead of the virtu-
al sensors in virtual array. Furthermore, the required com-
pressed virtual interference-plus-noise covariance matrix can
be reconstructed to remove the desired signal components
in the current sample compressed virtual covariance matrix
R̂c [23, 24], which can be used to further improve the output
SINR performance especially at high SNRs.

In the previous research of coprime array for DOA estima-
tion, the computational complexity is O

(
(MN)3

)
. Benefit

from compressive sensing, the computational complexity of
the proposed adaptive beamforming algorithm is O

(
(2M +

N)(MN)2
)
, which is dominated by spatial smoothing pro-

cess. It is sightly larger than the general MVDR beamform-
ing algorithm, which computational complexity is O

(
(2M +

N)3
)
.
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Fig. 2. Output performance comparison. (a) Output SINR versus SNR; (b) Output SINR versus number of snapshots.

4. NUMERICAL SIMULATION

In our simulations, a coprime array with coprime factors M =
5 and N = 11 is deployed, which equals to 2M+N−1 = 20
physical sensors. The desired signal is assumed to be a far-
field narrowband waveform from the direction θs = 5◦, and
two interferences are assumed to have DOAs φ1 = −20◦

and φ2 = 30◦, respectively. The interference-to-noise ratio
(INR) in each sensor is set to be 30dB. The additive noise
is modeled as a zero-mean complex white Gaussian process.
For each scenario, 1,000 Monte-Carlo runs are performed.

The proposed adaptive beamforming algorithm is com-
pared to the SMI beamformer, the diagonal loading SMI
(DLSMI) beamformer, the worst-case performance-based
beamformer and the eigenspace-based beamformer. Unlike
the proposed one, all other beamformers are optimized from
the sample covariance matrix R̂ in (7) directly. In the pro-
posed beamforming algorithm, the complex-valued compres-
sive sensing matrix Φ satisfies the orthonormal assumption,
namely, ΦΦH = I. The entries of Φ are generated from
an independent and identically distributed (i.i.d.) zero-mean
random Gaussian distribution CN

(
0, 1√

2M+N−1

)
. The di-

agonal loading factor ξ = 10σ2
n is adopted in the DLSMI

beamformer, and the norm upper-bound of the signal steering
vector mismatch is chosen to be ε = 3 in the worst-case
beamformer. The desired signal direction is assumed to be
exactly known by all tested beamforming algorithms. In addi-
tion, the optimal SINR (4) is also presented as the benchmark,
which is calculated from the exact interference-plus-noise co-
variance matrix and the desired signal steering vector.

Fig. 2(a) compares the output SINR versus input SNR,
where the number of snapshots is fixed to be K = 30. Be-
cause the proposed beamforming algorithm exploits a much
longer virtual array instead of the original coprime array, its

output SINR has shown significant improvement compared to
the other beamformers especially at high SNRs. In Fig. 2(b),
the output SINRs for the tested methods are illustrated against
the number of snapshots K, where the SNR in each sensor is
fixed to be 10 dB. It is obvious that the proposed beamforming
algorithm has much faster convergence rate than others. By
comparing with the SMI beamformer only, we can see that
the performance loss due to compressive sensing is much less
then the performance increment provided by the longer virtu-
al array. Although the proposed beamforming algorithm per-
forms better than others, we note that the desired signal self-
nulling phenomenon is still severe especially at high SNRs.
In order to avoid or alleviate the self-nulling phenomenon, the
interference covariance matrix reconstruction method [23,24]
is a good candidate.

5. CONCLUSION

In this paper, we proposed a novel adaptive beamforming al-
gorithm specially designed for the coprime array. By using
the property of coprime array, a much longer virtual uniform
linear array can be generated from a coprime array. In order to
design an adaptive beamformer for the coprime array, a ran-
dom compressive sensing kernel is adopted to compressively
sample the virtual uniform linear array. Hence, a connection
is built between the coprime array and the virtual array. By
calculating the sample compressed virtual covariance matrix
via spatial smoothing, the adaptive beamformer is designed
based on the MVDR beamforming principle. Simulation re-
sults demonstrate that the proposed beamformer outperforms
the others which use the coprime array received signal direct-
ly. The main reason is that the performance increment benefit-
ed from the much longer virtual uniform linear array is much
larger than the performance loss due to compressive sensing.
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