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ABSTRACT 

 

In this paper, a visual saliency detection model based on 

tensor sparse reconstruction for images is proposed. This 

algorithm measures saliency value of image regions by the 

reconstruction residual and performs better on color images 

than current sparse models. Current sparse models treat a 

color image as multiple independent channel images and 

vectorise the image patches, ignoring interrelationship 

between color channels and spatial correlation between 

neighbouring pixels. In contrast, the proposed tensor sparse 

model treats a color image as a 3D array, retaining the spatial 

color structures entirely during the sparse coding. The 

proposed saliency detection method is tested on ASD dataset 

and OSIE dataset and compared with traditional sparse 

reconstruction based models. The experimental results show 

that our model achieves higher AUC scores than traditional 

sparse reconstruction based models. 

 

Index Terms— tensor, tensor orthogonal matching 

pursuit (TOMP), saliency detection, sparse reconstruction, 

residual 

 

1. INTRODUCTION 

 

In dynamic visual scenes of complex environments, it is a 

very important mechanism for human beings to catch critical 

information effectively. In recent years, visual saliency has 

been studied by researchers in domains of psychology, 

neurophysiology and computer vision.  Meanwhile, it 

becomes more significant to automatically extract the salient 

regions from images with an explosive growth of image 

information. 

Some visual saliency detection models are proposed to 

be extensively used in object detection, target recognition and 

image comprehension. Most of these models take efforts to 

explain the cognitive process of humans [1], [2], [3]. 

Physiological experiments show that the neuron response is 

suppressive when the surrounding items are close to the 

center while the response is excitatory when they show a lot 

of difference from the center. Itti et al. [4] are motivated to 

define a visual attention model as center-surround contrast 

based on multi-scale image analysis, where a salient region 

pops up from a scene due to big difference from its 

neighbouring regions in the appearance of color, intensity and 

orientation.  

Physiological data have suggested that primary visual 

cortex (area V1) uses a sparse code to efficiently represent 

natural scenes and the mechanisms in the area V1 contribute 

to the high saliency of pop-up objects. In recent years, the 

researchers are motivated to use sparse representation model 

for saliency computation, where the salient regions are 

extracted according to sparse reconstruction residuals since 

these regions cannot be well approximated using its 

neighbouing patches as dictionaries. Han et al. [5] proposed 

a weighted sparse coding residual model for bottom-up 

saliency detection, where the reconstruction residuals are 

weighted with the L0 norm of sparse coefficients to produce 

the saliency map. In [6], the saliency value of each region is 

measured by the Incremental Coding Length (ICL), where the 

ICL is the description length of the sparse coding and 

increases when the center patch is more informative than its 

surrounding patches. All these methods used traditional 

sparse models to compute the reconstruction residuals. 

However, these traditional sparse models cannot provide a 

good approximation of the entire spatial color structures of 

the image.  

In order to avoid color distortions during sparse 

representation, most recent works focus on establishing 

tensor-based sparse models to represent multi-channel 

images, e.g. RGB color images. As we know, tensor analysis 

is helpful in data structure preservation. Accordingly, tensor 

sparse models are expected to explore new solutions of 

classical problems of color image compression [7], 3D image 

reconstruction [12] and multispectral image denoising [8]. 

Tensor decomposition method had already been proposed by 

Tucker [10]. Based on Tucker decomposition technique, 

Caiafa et al. proposed TOMP [11] algorithm to compute 

sparse representations of a tensor. We use TOMP to calculate 

sparse representations of color images. 

In this paper, we are motivated to propose a saliency 

detection model based on tensor sparse reconstruction 

method and center-surround mechanism of biological vision. 

To our knowledge, there are no prior works explicitly 

applying tensor sparse model in salient object detection. 

Meanwhile, we can expect that tensor sparse model will 
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provide a good solution of saliency detection problem due to 

well-preservation of local data structure. 

The remainder of this paper is organized as follows. The 

theory of tensor sparse model including TOMP algorithm is 

presented in Section 2. A saliency detection scheme is 

designed to extract salient regions in Section 3. Experimental 

results and comparative analysis are shown in Section 4. 

Finally, we give some conclusion remarks in Section 5. 

 

2. TENSOR SPARSE MODEL 

 

In traditional sparse representation methods, a two 

dimensional (2D) or a three dimensional (3D) image patch is 

reformed to a long vector for sparse coding [5],[6],[13]. 

When the input is a color image patch, it would incur both 

color and spatial structure distortions since a 3D array is 

reduced to a 1D vector. As for a grey-scale image patch, it 

also loses spatial structure information since the 2D image 

matrix is reduced to a 1D vector. It is noted that structure 

distortions are introduced in abovementioned traditional 

sparse models during the reduced order approximation of the 

high-order array. To tackle this problem, we use tensor sparse 

reconstruction model to represent input images, which 

provides a useful analysis tool for high-order data without 

order reduction. 

 

2.1. Basic concepts of tensor sparse representation 

 

It is proved that tensor decomposition shows advantages of 

good preservation of local structures in handling color images, 

multispectral images, video sequences and other high-

dimensional signals. Typical decomposition methods are 

PARAFAC [9] and TUCKER [10]. The PARAFAC 

decomposition model is to decompose the tensor as a sum of 

several rank-1 tensors with minimization of residuals, while 

the TUCKER decomposition decomposes a tensor into a set 

of 2D matrices and one small core tensor. 

Throughout this paper, tensors are defined using bold 

handwritten letters, e.g. 𝓐 ∈ R𝐼1×…×𝐼𝑁, matrices using capital 

letters, e.g. D ∈ R𝐽×𝐼 , and vectors using bold lowercase 

letters, e.g. a. The notations are listed as follows: 

Table 1. 

 Notations 

Notation Explanation 

||𝓐||   (∑ 𝑎𝑖1,…,𝑖𝑁

2
𝑖1,…,𝑖𝑁

)
1

2⁄  

×𝑛 mode-n product 

⊗ Kronecker product 

∘ outer product 

 

Let’s consider 𝓐 ∈ R𝐼1×𝐼2…×𝐼𝑁  as an N-order 

coefficient tensor, then its mode-n unfolding matrix is a 2D 

matrix, i.e. 𝓐(𝑛) ∈ R𝐼𝑛×𝐼1𝐼2…𝐼n−1𝐼𝑛+1…𝐼𝑁 . Given a dictionary 

matrix D𝑛 ∈ R𝐽𝑛×𝐼𝑛 , then its mode-n product with 𝓐  is 

defined as follows, 

𝓨 =  𝓐 ×𝑛 D𝑛               (1) 

𝑦𝑖1𝑖2…𝑖𝑛−1𝑗𝑛𝑖𝑛+1,,,𝑖𝑁
= ∑ 𝑎𝑖1,…,𝑖𝑁

𝐼𝑁
𝑖𝑛=1 𝑑𝑛𝑗𝑛𝑖𝑛

      

where 𝓨 ∈ R𝐼1×𝐼2…×𝐼n−1×𝐽𝑛×𝐼𝑛+1…×𝐼𝑁 , 𝑦𝑖1𝑖2…𝑖𝑛−1𝑗𝑛𝑖𝑛+1,,,𝑖𝑁
 is 

the element of 𝓨 , subscript represent its position in its 

dimension. 

For a common case, we set N=3, i.e.  𝓐 ∈ R𝐼1×𝐼2×𝐼3 . 

According to the TUCKER decomposition model [14], tensor 

𝓨 ∈ R𝐽1×𝐽2×𝐽3  is a multilinear transformation of a core 

tensor 𝓐 by the factor matrices D𝑖 = [𝐝𝐢1
, 𝐝𝐢2

, … , 𝐝𝐢𝐼𝑖
] ∈

R𝐽𝑖×𝐼𝑖, 𝑖 = 1,2,3. 𝐝𝐢𝐣
is the column of  Di and 𝐝𝐢𝐣

∈ RJi, j =

 1,2, … , Ji. We can reformulate (1) as below: 

𝓨 =  𝓐 ×1 D1 ×2 D2 ×3 D3            

= ∑ ∑ ∑ 𝑎𝑖1𝑖2𝑖3

𝐿3
𝑖3=1

𝐿2
𝑖2=1

𝐿1
𝑖1=1 𝐝𝟏𝑖1

∘ 𝐝𝟐𝑖2
∘ 𝐝𝟑𝑖3

 (2) 

Then it can be deduced in a matrix and vector form as, 

𝓨(𝒏) =  𝓐(𝒏)𝐃𝒏(𝐃𝑵 ⊗ … 𝐃𝒏+𝟏 ⊗ 𝐃𝒏−𝟏 … ⊗ 𝐃𝟏)𝑻 

𝑣𝑒𝑐(𝓨) = (D3 ⊗ D2 ⊗ D1)𝑣𝑒𝑐(𝓐)        (3) 

𝐲 = (D3 ⊗ D2 ⊗ D1)𝐚 

where  𝑣𝑒𝑐(𝓨) = 𝐲.  Operator 𝑣𝑒𝑐(∙)  is used to stack all 

columns of 3D array 𝓨 ∈ R𝐽1×𝐽2×𝐽3  as vector 𝐲 ∈ R𝐽1𝐽2𝐽3 , 

and stack all columns of 3D array 𝓐 ∈ R𝐼1×𝐼2×𝐼3  as vector 

𝐚 ∈ R𝐼1𝐼2𝐼3.  

As for PARAFAC decomposition method, it 

decomposes tensors as a linear summation of outer products 

of rank-1 vectors : 

𝓨 =  ∑ 𝝀𝒊𝒊 𝐮𝐢 ∘ 𝐯𝐢 ∘ 𝐰𝐢            (4) 

where vectors  𝐮i ∈ R𝐽1 , 𝐯i ∈ R𝐽2 , 𝐰i ∈ R𝐽3  compose of the 

eigen subspace of 𝓨 and 𝜆𝑖 is a scalar factor. 

The process for tensor sparse representation of input 3-

order signal 𝓨 can be formulated as: 

𝓐 = 𝐚𝐫𝐠 𝒎𝒊𝒏𝓐‖𝓨 −  𝓐 ×𝟏 𝐃𝟏 ×𝟐 𝐃𝟐 ×𝟑 𝐃𝟑‖𝑭 + 𝝀‖𝓐‖𝟎             

(5) 
 

where 𝜆 is the regularization parameter to achieve trade-off 

between the two cost terms. When dictionaries D1, D2, D3 

are known, it is more convenient to establish tensor sparse 

representation using TUCKER decomposition mode than 

using PARAFAC decomposition method. 

 
2.2. Tensor Orthogonal Matching Pursuit （TOMP） 

 

Saliency detection methods based on sparse representation 

show that the residual increases when a salient region is 

represented using surrounding neighbors as compared with a 

non-salient region. In this paper, we are motivated to use 

tensor sparse representation to represent color image patches. 

The dictionaries are selected as the 3×3 image patches 

adjacent to the center patch. Once the dictionary is given, 

the formula (5) can be solved by TOMP method [11]. TOMP 

is developed as an extension of OMP (Orthogonal Matching 

Pursuit) method to tensor space. The implementation details 

are given in Algorithm 1. 
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Algorithm 1: TOMP  

Input: A color image patch 𝓨 ∈ R𝐽1×𝐽2×𝐽3, 3-mode 

dictionaries {D1, D2, D3} with D𝑖 ∈ R𝐽𝑖×𝐼𝑖 , the  

predefined maximum number of non-zero coefficients 

k𝑚𝑎𝑥 and reconstruction residual tolerance σ. 

Output: sparse coefficients  𝓐, 𝓐 ∈ R𝐼1×𝐼2×𝐼3 

1. M𝑛  = [∅](n = 1,2,3), 𝓡 = 𝓨, 𝓐=0, 
 𝓧 ∈ R𝐼1×𝐼2×𝐼3 𝑣𝑒𝑐(𝓧) = 𝐱 ; 

2. While |M1||M2||M3| < k𝑚𝑎𝑥  && ||𝓡||
𝐹

> σ 

3. [m1
𝑘m2

𝑘m3
𝑘] = arg min[𝑚1𝑚2𝑚3] 

 |𝓡 ×1 D1
𝑇(: , 𝑚1) ×2 D2

𝑇(: , 𝑚2) ×3 D3
𝑇(: , 𝑚3)|; 

4. M𝑛 =  M𝑛 ∪ [m𝑛
𝑘], B𝑛 =  D𝑛(: , M𝑛); 

5. 𝐱 = arg min𝐱 ||𝐲 − (B3 ⊗ B2 ⊗ B1)𝐱||2
2 ; 

6. 𝓡 = 𝓨 −  𝓧 ×1 B1 ×2 B2 ×3 B3; 
7. end while 
8. 𝓐(M1, M2, M3) = 𝓧  
9. return 𝓐 

 

3. SALIENCY DETECTION BASED ON 

RECONSTRUCTION RESIDUALS 

 

As for those research works of saliency detection based on 

traditional sparse models, they treat RGB channels separately 

or stack RGB channel as a long vector. However, it is not 

consistent with the mechanism of human visual system, 

which processes the color channels parallelly.  

In order to tackle this problem, we propose to use tensor 

sparse reconstruction residuals to measure the saliency of 

each image region. The framework is shown in Fig.1. We use 

sliding windows to get image patch. For a color image patch, 

we reconstructed it using its surrounding patches as the 

dictionary atoms and normalize the reconstruction residual to 

the value range of [0, 1]. 

In our saliency detection framework, an input color 

image patch 𝓨 can be represented using the tensor sparse 

representation as: 

𝓨 = 𝓐 ×1 D1 ×2 D2 ×3 D3 + ε         (6) 

where 𝓐  is the sparse coefficients while  is the 

reconstruction residual. D1, D2, D3 are the dictionaries. If we 

use 𝓓 ∈ RM×N×3×K( K is the number of surrounding patches ) 

to represent surrounding patches, then D𝑖 = 𝓓(𝒊) .During 

saliency detection, the goal of sparse coding is to find a sparse 

coefficient with the least reconstruction residual, as given in 

(5).  

As we know, the term of ε in (6) indicates the prediction 

uncertainty of 𝓨 when surrounding image patches and 

sparse coefficient 𝓐 can be obtained. The unpredictability 

of 𝓨 will increase with the higher value of ε. Accordingly, 

we define the saliency value 𝑆𝑐 of image patch 𝓨  as the L2 

norm of the reconstruction residual: 

𝑆𝑐(𝓨) = ||𝓨 −  𝓐 ×1 D1 ×2 D2 ×3 D3||2
2      (7) 

The saliency computation algorithm is given in 

Algorithm 2. 

input image

surrounding 

patches as 

dictionaries

center

patch

saliency map

reconstruction residual

D1 tensor

sparse

coefficient

D2

D3

 Fig. 1  Framework of our method 

 
 

Algorithm 2: Saliency computation based on tensor 

sparse reconstruction residual 

Require: Given color image 𝐼 

output: The saliency map 𝑆𝑐 

1. for each image patch 𝓨  of the image 𝐼 , set 

dictionary D𝑖(i = 1,2,3)  from its surrounding 

patches 

2. Use TOMP algorithm to obtain the sparse 

representation of image patch 𝓨 
3. The saliency value of image patch 𝓨 is calculated 

by: 

 𝑆𝑐(𝓨) = ||𝓨 −  𝓐 ×1 D1 ×2 D2 ×3 D3||2
2 

4. Compute the saliency value of all the image 

patches, return 𝑆𝑐 

 

4. EXPERIMENTAL RESULTS 

 

In this section, we randomly selected some of the images over 

ASD dataset [14] and OSIE (Object and semantic images and 

eye-tracking) dataset [15] to evaluate the performance of our 

saliency detection method. ASD dataset is widely used as a 

benchmark in salient object detection with the ground truth 

of accurate object segmentation. OSIE dataset provides 

object and semantic saliency, including 700 images and 5551 

objects with contour outlined and semantic attribute 

annotated. 

2963



To verify the benefits of tensor sparse model in saliency 

detection, we compare the proposed saliency detection 

framework with three saliency detection methods based on 

traditional sparse Incremental Coding Length (ICL) [6], 

traditional sparse representation residual model (TSRR) [16] 

and bottom-up saliency based on weighted sparse coding 

residual (WSCR) [5]. 

We used the area under the ROC curve (AUC), precision 

(Pre), recall (Rec) and F-measure ( 𝐹𝑚 ) [14] values to 

quantitatively evaluate the performance of these four saliency 

detection methods. The AUC, Pre, Rec and 𝐹𝑚 values are 

widely-used metrics for performance evaluation of saliency 

detection. 𝐹𝑚 =
(1+𝜆)×𝑃𝑟𝑒×Rec

𝜆×Pre+Rec
 , where we set λ = 0.3  to 

emphasize precision. We listed mean AUC scores in Table 2 

for a statistical analysis from two datasets and mean precision, 

recall and F measure value in Table 3 from ASD dataset.  

The parameters of our method are set as below: patch 

size as 6× 6× 3, k𝑚𝑎𝑥 =3, σ = 10−6 . For surrounding 

patches, we used an 18×18 pixel window (consisting of 3×

3 patches, 6 × 6 pixels per patch), so that we got 8 

surrounding patches as dictionaries. 

Table 2. 
 COMPARISON OF THE MEAN AUC SCORES 

Method Dataset ASD Dataset OSIE 

ICL[6] 0.8254 0.7314 

TSRR[16] 0.8259 0.7198 

WSCR[5] 0.8316 0.7384 

OUR 0.8407 0.7417 

 

Table 3. 
 COMPARISON OF PRE, REC, F-MEASURE ON 

DATASET ASD 

Method Pre Rec F-measure 

ICL[6] 0.4679 0.5066 0.4763 

TSRR[16] 0.5344 0.4269 0.5050 

WSCR[5] 0.5163 0.7059 0.5504 

OUR 0.5827 0.8050 0.6223 

 

The AUC reflects the prediction accuracy of the saliency 

map for the fixation point of human eyes. If we get higher 

mean AUC score, then the algorithm can achieve more 

accurate prediction. From Table 2, we observe that our 

method achieves the highest mean AUC scores over two 

datasets. We also get the both high precision and high recall 

in Table 3, means that our algorithm can promotes the salient 

region and restrains unsalient region well. So, our proposed 

method presents the most promising performance of saliency 

detection in color images. 

Specifically, we compared the four saliency detection 

methods on the images, which contain the pop-up objects 

with same shape but in different color. As shown in Figure 2, 

we can observe that our saliency detection method can figure 

     
a)Original b) OUR c)ICL d)TSRR e)WSCR 

Fig. 2: Visual comparison of four saliency detection models 

 

 

      

      
(a) 

Origin 

(b) 

Ground 

Truth 

 

(c)  

ICL 

(d) 

TSRR 

(e) 

WSCR 

(f)  

OUR 

Fig. 3: Visual comparisons of saliency maps. 

 

out the pop-up object but the other three methods lost their 

detection efficiency. It is because that tensor sparse 

reconstruction is more accurate than traditional models.  

In order to show that our method has more accurate 

results in general saliency detection task in real scenes, we 

listed a set of subjective visual evaluation results in Figure 

3. It is noted that our saliency maps are more consistent with 

the ground truth, providing contour outline of saliency 

regions more accurately. It should be noted that all of these 

four methods apply a final Gaussian blur filter on the 

constructed saliency maps to preserve piece-wise saliency 

smoothness. 

 

5. CONCLUSIONS 

 

In this paper, we proposed a method for saliency detection 

based on tensor sparse reconstruction residual and center-

surround contrast model. Experimental results demonstrated 

that the proposed saliency detection framework can provide 

more consistent results with HVS than those methods based 

on traditional sparse models. The main reason is that the 

current sparse models lost spatial color structure information 

during the reduced order approximation of the high-order 

(order>2) signals. In contrast, we use tensor sparse model to 

represent high order signal without any information lost 

during sparse coding. Besides color images, it is significant 

that the proposed framework can be applied to the general 

saliency detection task in multidimensional signals. 
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