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ABSTRACT
Symmetric block partitioned tensors (SBPT) are a useful
structure in signal processing applications, often generated
from computing higher-order statistics on observed data.
Such tensors often follow the rank-(Rm, Rm, 1) SBPT struc-
ture, but in some applications the partitioning of the factor
matrices is not known a priori. We propose a both blind and
non-blind column-wise SBPT decomposition algorithms that
are better scalable to high-dimensional tensors because they
avoid large matrix inversions. We apply the algorithms to
simulated SBPTs and demonstrate that they estimate factor
matrices having high congruence with the originals across a
range of collinearity values for the columns of the original
factor matrices.

Index Terms— block partitioned tensor, symmetric ten-
sor, tensor decomposition

1. INTRODUCTION
Tensors are multi-way data arrays which have appeared in
applications such as antenna array processing, chemomet-
rics, and computer vision, among many others. Many tensor
models have been developed over the years, with some of
the most commonly known being the Canonical Decompo-
sition/Parallel Factors (CP) model [1][2] and Tucker model
[3]. More recently, the more general model of block parti-
tioned tensors (BPT), which incorporates models such as CP
as special cases, has been developed [4]. A particularly useful
property of tensors, and a reason they can be found in many
applications, is that their decompositions are often unique (up
to column permutation and scaling) under certain conditions
[5][6].

A particular case of these tensor models is tensors con-
sisting of a collection of symmetric faces, making them sym-
metric in certain modes of the tensor, but not others. Such
tensors often arise when their entries are generated from
high order statistics. For example, one particular application
we have investigated has made use of the trispectrum for
the purpose of blind signal separation using a single sensor
[7][8]. These tensors, consisting of sums of trispectra, can be
modeled as symmetric CP tensors, however they cannot be
uniquely decomposed into factor matrices (providing power
spectrum and on/off activity information) under that model.
To achieve a unique decomposition they must be modeled
as rank-(Rm, Rm, 1) symmetric block partitioned tensors
(SBPT) as proposed in [4].
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In the decomposition algorithm proposed for rank-(Rm,
Rm, 1) BPTs in [9], the matrix partitioning is known, while in
situations such as the spectrum sensing application above we
do not a priori know the partitioning as it will be a function of
the mixture of the unknown signals, nor does that algorithm
enforce symmetry. Additionally, it relies on an alternating
least squares (ALS) approach which becomes computation-
ally unwieldy as the tensor dimensions grow, such as when
high resolution is desired in the spectrum sensing application.

Previous algorithms for the similar problem of joint block
diagonalization with symmetric matrices [10] and our initial
exploration into SBPT decomposition use gradient-based op-
timization strategies, however they become extremely slow
and unreliable as the factor matrix dimensions increase. In
this work we propose column-wise updating non-blind and
blind SBPT tensor decomposition algorithms which iterate
quickly, even at higher dimensions, as each step consists of
a few matix operations, avoiding large matrix inversions. The
blind version estimates matrix partitioning using clustering.
After describing the algorithm we evaluate its performance
through simulation on simulated data with controlled con-
gruence between factor matrix columns. We find that, for a
20×20×20 tensor of rank 16 with 4 partitions, the algorithms
typically converge within 50,000 iterations and produce fac-
tor matrix estimates with low complementary cosine similar-
ity (CCS) as compared to the true matrices for a wide range of
congruences when appropriate regularization coefficients are
chosen.

2. NOTATION
In this paper we use the following notation, much of it match-
ing that in the tutorial paper [11]. Vectors are denoted as x
and matrices are X with elements xm and xmn, respectively.
Column i of matrix X is denoted as xi while row i is denoted
with MATLAB-like notation Xi:. X ∈ KI×J×K is a ten-
sor with matricized unfoldings X(d), d = 1, 2, 3 (see [11] for
unfolding details). A � B =

[
a1 ⊗ b1 . . .aR ⊗ bR

]
is the

Khatri-Rao product of A and B. ◦ is the outer product, and ∗
is the Hadamard product of matrices. The soft-threshold op-
erator with threshold ν is Sν(x) = sign(x) ·max(|x| − ν, 0).

3. SYMMETRIC BLOCK PARTITIONED TENSOR
Our interest is in real-valued three-way front-symmetric
BPTs (SBPT) having rank-(Rm, Rm, 1) partitions where
tensor Y has entries where yijk = yjik. The factor ma-
trices for this type of SBPT are F =

[
F1|F2| · · · |FM

]
∈

RI×R, consisting of M partitions each of rank Rm, and
C =

[
c1 c2 · · · cM

]
with each column corresponding
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to a partition in F. We can define a matrix W ∈ {0, 1}M×R
that encodes the partitioning of F by placing a 1 in row m if
column r of F is in partition m. The SBPT is constructed as

Y =

M∑
m=1

FmFTm ◦ cm =

M∑
m=1

R∑
r=1

frf
T
r ◦Cwr = JF,F,CWK

(1)
where the right hand notation is the shorthand used for a CP
decomposition. Conversion of the BPT to a CP model ex-
poses the W partitioning matrix which will enable estimation
of the partitions.

4. NON-BLIND SBPT DECOMPOSITION
We begin by devising a non-blind strategy for decomposing a
SBPT (that is we know the structure of W). Non-blind BPT
algorithms have been proposed before as in [9], as have those
for symmetric CP decompositions as in [2][12]. However,
those have not been for for the SBPT case. In [8] we used
a gradient-based approach to SBPT decomposition, but the
slowness of convergence at high dimensions was prohibitive.

For the non-blind SBPT decomposition we take a cue
from previous ALS algorithms where F is treated as two
factor matrices for the purposes of solving

[F̂A, F̂B , Ĉ] = arg min
FA,FB ,C

‖Y − JFA,FB ,CWK‖2

+ λF (‖FA‖1 + ‖FB‖1) + λC‖C‖1.
(2)

The addition of the L1 regularization terms is useful in im-
proving the estimate when the factor matrices are sparse, e.g.
in the spectrum sensing case where each signal in F occupies
a small bandwidth, as well as encourage factor matrix separa-
tion.

Taking the alternating update strategy to the extreme of
doing coordinate descent, we can minimize over one variable
in each factor matrix at a time. For entries in the FA matrix,
this results in a solution of

f̂Air = SλF /‖uAr‖2

eTi

(
Y(1) − F̃AU

T
A

)
uAr

‖uAr‖2
+ f̃Air

 (3)

where ei is the vector of zeros with a 1 in entry i, F̃A is the
current estimate of F, and UA = CW � FB . If we take the
Jacobian of Y − JFA,FB ,CWK with respect to fAir, 1 ≤
i ≤ I we find that the tensor entries affected by element n of
fr do not intersect with the entries affected by fAmr, m 6= n
meaning we can update the estimate of FA columnwise by
updating all variables in fAr in parallel as

f̂Ar = SλF /‖uAr‖2


(
Y(1) − F̃AU

T
A

)
uAr

‖uAr‖2
+ f̃Ar

 . (4)

Likewise, the update for fBr is

f̂Br = SλF /‖uAr‖2


(
Y(2) − F̃BU

T
B

)
uBr

‖uBr‖2
+ f̃Br

 (5)

where UB = CW � FA. The update for cm as

ĉm = S λC
‖uCm‖2


(
Y(3) − C̃WUT

C

)
UCW

T
m:

‖Wm:UT
C‖2

+ c̃m

 (6)

where UC = FB � FA.
Having treated the repeated factor matrix F as two differ-

ent matrices for the purpose of finding a simple update equa-
tions leads to the question of how best to enforce the con-
straint that FA = FB . A common strategy in the symmetric
CP case is to not enforce equality and hope that once the al-
gorithm converges FA ≈ FB [2][11]. Empirically, we found
that not including the equality constraint at all in the BPT
decomposition rarely resulted in FA ≈ FB . Instead we hard-
constrain FA = FB by projecting the outputs of (4) and (5) to
what amounts to the average direction between the columns.
We first need to align the columns by finding a scaling coeffi-
cient αr = arg minα ‖|α|fAr − 1

α fBr‖
2 which is given by

αr = SGN(fTArfBr)
√
‖fBr‖/‖fAr‖ (7)

where SGN is a modified signum function with SGN(0) = 1.
Having found α, the solution is then updated as f̂Ar = f̂Br =
1
2 |αr|f̂Ar + 1

2αr
f̂Br.

The cases of ‖fAr‖2 = 0 or ‖fBr‖2 = 0 must be handled,
to avoid α = 0 or being undefined. If either column has
zero norm, then we rescale the corresponding column in the
other matrix to have a norm of 1 and then continue on. One
column having zero norm effectively reduces the rank of the
tensor estimate, but the possibility it can reenter the active set
is allowed for by normalizing the column in the other factor
matrix and restricting the columns being updated to be fAr ∈
QA = {r : ‖fBr‖ 6= 0} (with a similarly defined set QB for
identifying the columns fBr to update).

Since tensor decompositions have a scaling ambiguity
leading to infinite solutions on a manifold, we constrain
‖cr‖2 = 1 and rescale the columns of FA and FB accord-
ingly.

5. BLIND SBPT DECOMPOSITION
In the case where we do not a priori know the partitioning
of the F matrix, we need to estimate the partitioning matrix
W. Continuing with the alternating method of the non-blind
algorithm, we can introduce a step to estimate W. We dis-
cussed that the structure of W is block diagonal in Sec. 3,
however determining the ranks Rm is a difficult combinato-
rial problem, especially as R becomes large. Other work [13]
has tried to solve similar diagonalization problems in the face
of column permutations by introducing L1 regularization on
W to select a small set of active variables, followed by M ·R
variable elimination tests to find the minimum solution. Our
algorithm relies on finding a least squares fit for a transformed
W, and then finding partitions by constructing M clusters
from the columns of the estimated matrix formed by CW.

2957



Input: Y, M, R
Initialize: λF ≥ 0, λC ≥ 0, FA, FB , C, W

F̃A ← FA, F̃B ← FB , C̃← C, W̃←W
while not converged do

f̃Ar ← update by (4) for r ∈ QA
f̃Br ← update by (5) for r ∈ QB
αr ← update by (7) for r = 1, . . . , R
f̂Ar, f̂Br ← 1

2
(|αr|fAr + fBr/αr) for r ∈ QA ∩QB

f̂Ar ← normalize for r 6∈ QA
f̂Br ← normalize for r 6∈ QB
w̃r ← sign(αr)w̃r

c̃m ← update by (6) for m = 1, . . . ,M
C̃← Q from QR decomposition C = QR
W̃← RW from QR decomposition C = QR
w̃r ← update by (8) for r ∈ QA ∩QB
γ ←

√
1T (W̃ ∗ W̃)

W̃ = W · diag(γ)−1

F̃A ← F̂A · diag(
√
γ)

F̃B ← F̂B · diag(
√
γ)

end while
fr ← F̃A or F̃B for r ∈ QA ∩QB , 0 for r 6∈ QA ∩QB
[C,d]←M cluster centers and assignments from C̄ = C̃W̃
W← from cluster center assignment d
Optional: Refine F, C estimates with non-blind algorithm

Output: F, C, W

Fig. 1. Algorithm for blind SBPT decomposition.

Eqs. (4)-(6) are used unchanged, but we add constraints and
an equation to update the estimate for W in this section.

While we have defined W to be a matrix consisting of 0’s
and 1’s, we can ignore this constraint and simplify compu-
tations by introducing some transformations to the problem.
Namely, we constrain a new matrix C′ to be an orthonormal
matrix. If C and W are the true factor and partitioning ma-
trices, with C′ = Q then W′ = RW where C = QR, a
QR decomposition. The effect is that W′ is not sparse and
we can avoid a high-dimensional inversion of C′ because it is
unitary.

We could compute an estimate for all entries in W simul-
taneously, but the inversion of the FB � FA matrix of size
I2 × R becomes prohibitive as the tensor dimensions grow.
Instead, similar to the non-blind algorithm, we update the
solution column-wise for ŵ′r which a derivation (assuming
λC = 0) reveals has the solution

ŵ′r =
C′T

(
Y(3) −C′W̃′UT

C

)
uCr

‖uCr‖2
+ w̃′r. (8)

Again, because of the scaling indeterminancy, we constrain
‖w′r‖2 = 1, moving all scaling into the estimate of F. Simi-
lar to the divide-by-zero concerns in the previous section, we
only update columns w′r for r ∈ QA ∩QB .

The decomposition terminates with estimates Ĉ′ and Ŵ′,
but because of the constraint on C′ the estimates are not the
final solutions nor do they give partitioning information. As-
suming we know the number of partitions M , we perform
clustering on the R column vectors in the matrix C̄ = Ĉ′Ŵ′
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Fig. 2. The congruence of the factor matrix estimates is a
function of the collinearity, with performance worsening as it
increases. A non-zero value for λF substantially improves the
estimate of F, but has an insignificant effect on C. Congru-
ence worsens in the unequal power case as the estimates of the
lower-power components are poor compared to the higher-
power components. The estimate of C has better congruence
than that of F as it has more data to be computed from.

such that M cluster centers are found with the columns each
assigned to one. Clustering strategies such as k-means with
k = M or mean-shift clustering [14] with an appropriately
chosen bandwidth parameter can be used to find the M clus-
ters and perform assignment. We choose to use the mean-shift
algorithm.

The output of the clustering algorithm is a matrix Ĉ of
M cluster centers, which are the final estimate for C, and a
vector d with R elements assigning the columns of C̄ to the
centers. Using this information we construct the estimated
partitioning matrix W by placing a 1 in entry wr,d(r). Once
the partitioning matrix is estimated, the estimates for C and
F can be refined by using the non-blind SBPT decompostion
algorithm of Sec. 4. The algorithm steps are listed in Fig. 1.

6. SIMULATIONS
We evaluated the performance of this SBPT decomposition
strategy through simulation. To do this, we generate tensor
Y having factor matrices F, C in a manner similar to that
in [15], with modifications for the SBPT structure to cre-
ate rank-(Rm, Rm, 1) SBPTs with Rm = R/M . This is
done by starting with random column-wise orthonormal ma-
trices Hl, l = 1, . . . , Rm of dimension (I/Rm) ×M and a
Cholesky factor S having ones on the diagonal and a desired
congruence value c on the off-diagonal entries. The loading
matrix is then F = blkdiag(H1S, . . . ,HRmS) with a parti-
tion matrix W =

[
IRm | . . . |IRm

]
consisting of M horizon-

tally concatenated Rm × Rm identity matrices. Generating
the tensor in this manner allows us to control the congruency
as well as the sparsity of the factor matrices. A similar pro-
cedure is used to generate the C matrix. A vector p scales
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Fig. 3. When the tensor factors contain similar power levels,
the success rate of estimating the correct partition rank is high
across the range of collinearity values. When the factors con-
tain unequal power the accuracy decreases at high values of
collinearity and is affected by the choice of λF . The dip at
the c = 0, λF = 0 equal power case is from several simula-
tion runs hitting the iteration limit before the columns of C
iterated close to their cluster centers.

each partition to set its power so that that generated tensor is
Y = JF,F,C · diag(p) ·WK. The input to the algorithm is
Z = Y + N where N is a Gaussian noise tensor scaled to
such that the signal-to-noise ratio is SNR = ‖Y‖/‖N ‖.

The tensors we generated in simulation were of dimen-
sion 20× 20× 20 with R = 16, M = 4, and Rm = 4, m =
1, . . . , 4. The SNR in all cases was 15dB. The iterations were
considered to have converged when the relative change in
variables was less than 10−7 and the iteration limit was set
to 50,000. Two power configurations were considered: in the
first, all tensors had the same power so p = 125 · 1M , while
in the second p =

[
125 100 75 50

]T
, a difference of

3.98dB between the strongest and weakest components. The
collinearity between components was varied between 0 and
0.8 and the values of λF took values 0, 1, 2, and 3. 100 sam-
ples were generated for each data point. The accuracy of the
decomposition is evaluated by the average complementary co-
sine similarity (CCS) measure between the true factor matrix
A with R columns and its estimate Â

CCS(A, Â) = arg min
π

1

R

R∑
r=1

1−

∣∣∣∣∣ aTr âπ(r)
‖ar‖‖âπ(r)‖

∣∣∣∣∣ (9)

where Âπ is a reordering of the columns of the estimate. A
CCS value of 0 is a perfect match, while a value of 1 is no
match.

Fig. 2 illustrates the performance of the decomposition in
both power configurations considered. For this size tensor,
across all collinearities, convergence was achieved in both
blind and non-blind cases in about 42,000 iterations, on av-
erage. We see that an non-zero value for λF substantially im-
proves the congruency of the estimate of F. The CCS across
the range of non-zero λF values considered varied somewhat,
but the difference is not as substantial as compared to λF = 0.
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Fig. 4. Even though C in our simulations is not sparse, the
congruence of Ĉ was improved at higher collinearity values
by refining the blind estimate using the non-blind algorithm
with a positive, non-zero value for λC . The curve for the CCS
of C from the blind algorithm coincides with the λC = 0
curve. A less significant improvement in the CCS for F̂ is
also observed, but not plotted.

The plots for the CCS for C were similar regardless of the
value for λF , and the non-blind results for C were so similar
to the blind that we did not plot them. The blind and non-blind
algorithms have similar recovery performance at low values
of collinearity, while at high collinearity the non-blind ver-
sion outperforms the blind. There is a clear decrease in per-
formance when the tensor components have unequal power, a
result of the components containing more energy being bet-
ter estimated, while the lower power components are less ac-
curately estimated. The effect of the decreased accuracy can
also be seen in Fig. 3 where the equal power case estimates the
correct partition rank with high-probability across the range
of collinearity while the unequal configuration suffers from
decreased success at high values of collinearity.

The CCS of the estimates for F and C do not significantly
improve with refinement of the blind algorithm output by the
non-blind algorithm when λC = 0. Fig. 4 illustrates how a
non-zero value for λC can improve that factor matrix’s CCS
in the refinement stage at high collinearity values, even for
non-sparse C as the L1 regularization encourages the separa-
tion of factors better than a least-squares fit by .

7. CONCLUSION
We have proposed non-blind and blind column-wise alter-
nating tensor decomposition algorithms for symmetric block-
partitioned tensors. The column-wise approach, with addi-
tional constraints for the blind algorithm, reduces computa-
tions by avoiding large matrix inversions. Simulation results
on synthetic SBPTs with controlled sparsity and inter-column
collinearity values demonstrate that the algorithms are capa-
ble of estimating the factor matrices with low CCS values
across all collinearities, and high probability of correct par-
tition rank estimates at lower collinearity values.
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