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ABSTRACT

We propose a statistical algorithm for detecting line outages in
a power system and show that it has better performance than
other schemes proposed in the literature. Our algorithm is
based on the Cumulative Sum (CuSum) test from the Quick-
est Change Detection (QCD) literature. It exploits the statis-
tical properties of the measured voltage phase angles before,
during, and after a line outage, whereas other methods in the
literature only utilize the change in statistics that occurs at the
instant of outage.

Index Terms— Power systems, line outage detection,
quickest change detection, CuSum test, Shewhart test.

1. INTRODUCTION

Many tools for power system monitoring and control rely on
a model of the power system that is obtained offline, which
can be inaccurate due to topology errors. Thus, rapid detec-
tion of line outages in a power system is crucial for maintain-
ing reliable and stable operation. As an example, in the 2011
San Diego blackout, operators were unable to determine over-
loaded lines because the network model was out of date [1].
This lack of situational awareness limited the operators’ abil-
ity to identify and prevent the next critical contingency, lead-
ing to instability and cascading failures. Similarly, during the
2003 Northeast blackout, operators failed to initiate the cor-
rect control schemes because they had an inaccurate model
of the power system and could not identify the loss of key
transmission elements [2]. These blackouts highlight the im-
portance of developing online measurement-based techniques
to detect and identify system topological changes in a timely
manner. This paper addresses the issues discussed above by
proposing a real-time algorithm for detecting line outages;
this algorithm is based on the theory of quickest change de-
tection (QCD).

Earlier detection algorithms found in the literature, which
we collectively refer to as meanshift tests, exploit the fact that
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when a line outage occurs, the expected value of some mea-
sured variables (e.g., voltage phase angles), at the exact time
of change is different from the average pre-change values [3]–
[8]. The methods used in these papers can be equivalently
formulated as a log-likelihood ratio test that only uses the
most recent measurement to make a decision on whether or
not an outage has occurred; additionally, none of these detec-
tion schemes exploit the persistent change in the covariance
of the observations after the occurrence of a line outage.

As in [9], the algorithm proposed in this paper is based
on adapting the Cumulative Sum (CuSum) test from the QCD
literature (see, e.g., [10], [11]) to the line outage detection
problem. Our algorithm not only takes the persistent covari-
ance change into consideration, but it also exploits past ob-
servations to detect the occurrence of an outage. In [9], the
statistics for each individual line are compared to a common
predetermined threshold, and an outage is declared if one of
these statistics crosses the threshold. In this paper, we present
a method for setting a different threshold for each line out-
age statistic by taking the dissimilarity between the pre- and
post-change distribution into consideration. This difference
between pre- and post-change distributions is described by
the Kullback-Leibler (KL) divergence, a metric that quanti-
fies the distance between two distributions. In addition, we
compare the performance of our test to that of the Shewhart
test, the meanshift test, and the algorithm of [9], and observe
notable improvements in terms of performance.

2. POWER SYSTEM MODEL

In this section, we present the pre- and post-outage statistical
model of the power system voltage angles used for formulat-
ing the proposed line outage detection algorithm.

2.1. Pre-outage Incremental Power Flow Model
Consider a power system network represented by a graph
with N nodes and L edges denoted by V = {1, . . . , N}
and E , respectively. Let (m,n) ∈ E denote the transmis-
sion line between buses m and n. Let Pi[k] := Pi(k∆t),
∆t > 0, k = 0, 1, 2, . . . , denote the kth measurement
sample of active power injections into bus i. Similarly, let
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θi[k], k = 0, 1, 2, . . . , denote bus i’s kth voltage angle mea-
surement sample. Furthermore, define variations in voltage
phase angles between consecutive sampling times k∆t and
(k+1)∆t as ∆θi[k] := θi[k+1]−θi[k]. Similarly, variations
in the active power injections at bus i between two consecu-
tive sampling times are defined as ∆Pi[k] = Pi[k+1]−Pi[k].

Now, using the standard DC power flow assumptions (see,
e.g., [12]), namely, i) flat voltage profile, ii) negligible line
resistance, and iii) small phase angle differences, we can de-
couple the real and reactive power flow equations and relate
the variations in the voltage phase angles to the variations in
the real power flow as follows:

∆P [k] ≈ H0∆θ[k], (1)

where ∆P [k], ∆θ[k] ∈ R(N−1) and H0 ∈ R(N−1)×(N−1).
Note that the N − 1 dimension of the vectors is the result
of omitting the reference bus equation. Then, by denoting
M0 := H−10 , we can rewrite (1) as follows:

∆θ[k] ≈M0∆P [k]. (2)

2.2. Post-Outage Incremental Power Flow Model

Now, suppose an outage for line (m,n) occurs at time
t = tf , where (λ − 1)∆t ≤ tf < λ∆t. In order to
relate the post-outage ∆θ[k] to ∆P [k] as in (2), we first
express the change in matrix H0 resulting from the out-
age as the sum of the pre-change matrix and a perturba-
tion matrix, ∆H(m,n), i.e., H(m,n) = H0 + ∆H(m,n),
where the only non-zero terms in the matrix ∆H(m,n) are
∆H(m,n)[n, n] = −∆H(m,n)[m,n] = −∆H(m,n)[n,m] =
∆H(m,n)[m,m] = −1/X(m,n) with X(m,n) denoting the
imaginary part of the impedance of the outaged line [12].
By denoting M(m,n) := H−1(m,n), the post-outage relation
between the changes in the voltage angles and the real power
injection becomes

∆θ[k] ≈M(m,n)∆P [k]. (3)

2.3. Statistics of {∆θ[k]}k≥1

By attributing the small variations in the real power injections,
∆P [k], to random fluctuations in electricity consumption, we
can model the entries of ∆P [k] as identically distributed
(i.i.d.) random variables with a zero-mean joint Gaussian
probability density function (p.d.f.), i.e., ∆P [k] ∼ N (0,Σ).
We also assume that the entries of ∆P [k] are uncorre-
lated, which results in Σ being a diagonal matrix. Since
∆θ[k] are measured, and given (2) and (3), we have that
∆θ[k] ∼ f∞ = N (0,M0ΣMT

0 ) for the pre-outage voltage
phase angles and ∆θ[k] ∼ fσ(m,n) = N (0,M(m,n)ΣM

T
(m,n))

for the post line (m,n) outage voltage phase angles. During
the instant of change, it was previously shown in [9] that
∆θ[k] ∼ fµ(m,n) = N

(
− M0P(m,n)[λ]r(m,n),M0ΣMT

0

)
,

where P(m,n)[λ] is the pre-outage line flow across (m,n) [9]
and r(m,n) ∈ RN−1 is a vector with the mth entry equal to 1,
the nth entry equal to −1, and all other entries equal to 0.

In summary, the p.d.f. of ∆θ[k] before, during, and after
an outage in line (m,n) is given by

∆θ[k] ∼


f∞, if k ≤ λ− 1,
fµ(m,n), if k = λ,

fσ(m,n), if k ≥ λ+ 1.
(4)

3. QUICKEST CHANGE DETECTION

With the statistical model for {∆θ[k]}k≥1 in place, the prob-
lem of detecting a line outage can be formulated equivalently
as a problem of detecting a change in the probability distribu-
tion of the sequence of observations {∆θ[k]}k≥1 as quickly
as possible given false alarm constraints. This problem of
detecting a change in the statistical behavior of a process
is known in the literature as the quickest change detection
(QCD) problem. We refer the reader to [10], [11] for a more
in-depth survey of QCD algorithms.

3.1. Preliminaries

Suppose that at some unknown time instant λ ≥ 1, a change
in the statistics of the observation sequence, {∆θ[k]}k≥1, oc-
curs due an outage in line (m,n). Therefore, we have that
before, during, and after the statistical change, the distribu-
tion of ∆θ[k] is described by (4).

The goal in QCD is to find a stopping time, τ , on the
observation sequence, at which time the line outage is de-
clared, such that the delay in decision making, measured by
Eλ[τ − λ|τ ≥ λ] is small, while guaranteeing that the occur-
rence of false alarm events is rare, i.e., E∞[τ ] ≥ γ, where
γ a desired lower bound [11]. Here Eλ denotes the expecta-
tion under the probability measure which is induced on the
observations when a change occurs at time λ, and E∞ de-
notes the expectation under the pre-change distribution. This
is a multi-objective optimization problem and several ways to
formulate the tradeoff between these two quantities are dis-
cussed in [11].

For the intuition behind the proposed detection algorithm,
it is useful to introduce the Kullback-Leibler (KL) divergence,
which is a measure of distance between two distributions. In
particular, the KL divergence between two probability density
functions, f and g, is defined as:

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx = Ef

[
log

f(X)

g(X)

]
. (5)

It is easy to show that D(f ‖ g) ≥ 0, with equality if and
only if f = g.
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3.2. The CuSum Algorithm

In our setting, the line in which the outage occurs is unknown,
i.e., the post-change distribution induced on the observation
sequence {∆θ[k]}k≥1 is unknown. Since there are |E| lines,
we have |E| different post-change scenarios.

We now present the CuSum algorithm, which detects sta-
tistical changes based on the idea of using past observation
to accumulate log-likelihood ratios. We present two versions
of this algorithm, one proposed in [9], in which a common
threshold is used for all CuSum statistics and another in which
the thresholds are selected based on each line’s KL diver-
gence.

We define the CuSum statistic corresponding to line
(m,n) outage recursively as:

WCU
(m,n)[k + 1] = max

{
WCU

(m,n)[k] + log
fσ(m,n)(∆θ[k + 1])

f∞(∆θ[k + 1])
,

log
fµ(m,n)(∆θ[k + 1])

f∞(∆θ[k + 1])
, 0

}
,

(6)

with WCU
(m,n)[0] = 0 for all (m,n) ∈ E . The CuSum stopping

time is defined as:

τCU = inf
(m,n)∈E

{
inf{k ≥ 1 : WCU

(m,n)[k] > ACU
(m,n)}

}
. (7)

We now present ways of choosing the thresholds for the
CuSum test. It can be shown (see, e.g., [13]) that by choosing

ACU
(m,n) = log γ − log β(m,n), (8)

with β(m,n) being a positive constant independent of γ, the
expected delay for each possible outage differs from from the
corresponding minimum delay among the class of stopping
times Cγ = {τ : E∞(τ) ≥ γ}, as γ → ∞, by a bounded
constant.

A choice of thresholds for the CuSum algorithm is ob-
tained by setting β(m,n) = 1

L for all (m,n) ∈ E . This way
we get a common threshold, i.e., ACU

(m,n) = ACU = log(γL)

for all (m,n) ∈ E . It can be shown (see, e.g., [14]) that
by choosing the thresholds this way, we can guarantee that
E∞[τCU] ≥ γ.

Using the results in [13], another choice of the thresholds
could be based on a relative performance loss criterion, i.e.,

β(m,n) =
1

D(fσ(m,n) ‖ f∞)L(ζ(m,n))2)
, (9)

where

ζ(m,n) = lim
b→∞

Eσ(m,n)

[
e{−(S(m,n)[τ

b
(m,n)]−b)}

]
, (10)

with
τ b
(m,n) = inf{k ≥ 1 : S(m,n)[k] ≥ b}, (11)

and

S(m,n)[k] =

k∑
l=1

log
fσ(m,n)(∆θ[l])

f∞(∆θ[l])
. (12)

This choice of threshold depends on the asymptotic overshoot
of an SPRT-based test, which is often used in hypothesis test-
ing [10]. As we show later through case studies, these thresh-
olds result in performance gains.

4. OTHER ALGORITHMS FOR CHANGE
DETECTION

In this section, we present some other change detection algo-
rithms that can be shown to be equivalent to other techniques
proposed in the literature. For example, the line outage detec-
tion algorithm proposed in [5] can be shown to be equivalent
to a log-likelihood ratio test that only uses the most recent
measurements.

4.1. Meanshift Test

The meanshift test is a “one-shot” detection scheme in that
the algorithm uses only the most recent observation to decide
whether a change in the mean has occurred and ignores all
past observations. The meanshift statistic corresponding to
line (m,n) is defined as follows:

WMS
(m,n)[k] = log

fµ(m,n)(∆θ[k])

f∞(∆θ[k])
. (13)

The decision maker declares a change when one of the |E|
statistics crosses a corresponding threshold, AMS

(m,n). The
stopping time for this algorithm is defined as:

τMS = inf
(m,n)∈E

{
inf{k ≥ 1 : WMS

(m,n)[k] > AMS
(m,n)}

}
.

(14)
The meanshift test ignores the persistent covariance

change that occurs after the outage. In particular, note that the
meanshift test is using the likelihood ratio between the dis-
tribution of the observations before and at the changepoint.
More specifically, assuming that an outage occurs in line
(m,n), the expected value of the statistic at the changepoint
is given by

Eµ(m,n)

[
log

fµ(m,n)(∆θ[k])

f∞(∆θ[k])

]
= D(fµ(m,n) ‖ f∞) > 0. (15)

On the other hand, after the changepoint (k > λ), the
expected value of the statistic is given by

Eσ(m,n)

[
log

fµ(m,n)(∆θ[k])

f∞(∆θ[k])

]
=

= D(fσ(m,n) ‖ f∞)−D(fσ(m,n) ‖ f
µ
(m,n)),

(16)

which could be either positive or negative.
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4.2. Shewhart Test

Similar to the meanshift test, the Shewhart test is also a “one-
shot” detection scheme. This test attempts to detect a change
on the observation sequence through the meanshift and the
change in the covariance of the data. The Shewhart test statis-
tic for line (m,n) outage is defined as:

W SH
(m,n)[k] = max

{
log

fµ(m,n)(∆θ[k])

f∞(∆θ[k])
, log

fσ(m,n)(∆θ[k])

f∞(∆θ[k])

}
,

(17)
where the first log-likelihood ratio is used to detect the mean-
shift, while the second log-likelihood ratio is used to detect
the persistent change in the covariance. The stopping time is:

τSH = inf
(m,n)∈E

{
inf{k ≥ 1 : W SH

(m,n)[k] > ASH
(m,n)}

}
.

(18)
Since the Shewhart test exploits the covariance change in ad-
dition to the meanshift statistic, it should perform better than
the meanshift test, at least as the meantime to false alarm goes
to infinity, which is verified in the case studies.

All the detection algorithms presented in this paper can
also be used to identify the outaged line, which is estimated
to be the line with the largest statistic at the stopping time, τ .
Denote L̂ to be the estimated outaged line. Then,

L̂ = arg max
(m,n)∈E

W(m,n)[τ ]. (19)

5. SIMULATION RESULTS AND DISCUSSION

In this section, we demonstrate the effectiveness of our pro-
posed line outage detection algorithm on a IEEE 14-bus sys-
tem. We applied the CuSum algorithm to the IEEE 14-bus
test system for an outage in line (2, 5), with the thresholds
chosen according to (8). The entries of ∆P [k] are sampled
from a zero-mean Gaussian p.d.f. with covariance matrix,
Σ = diag(0.5). We simulate a the line outage at k = 10
and the results are shown in Fig. 1. The WCU

(2,5)[k] statistic
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Fig. 1. Example of a run of the CuSum for the 14-bus system.

(blue) crosses the threshold of ACU
(2,5) = 100 at τCU = 57,

resulting in a detection delay of 47 samples. As expected, all
of the other CuSum statistics (red) either remain close to zero,
or increase at a slower rate.

Next, we perform Monte Carlo simulations for the She-
whart, meanshift, and CuSum algorithms to obtain plots of
average detection delay versus mean time to false alarm. The
values for the average detection delay are obtained by simu-
lating an outage in line (4, 5) and running the corresponding
detection algorithms for different thresholds until a detection
of the outaged line is declared. For computing the mean time
to false alarm, the detection algorithms are executed for the
power system under normal operation until a false alarm oc-
curs. Since false alarm events are in general rare, averaging
many sample runs would incur significant computation time.
In order to reduce the simulation time, importance sampling
is used for the meanshift and Shewhart tests. For our simu-
lations, we found that the error bounds for all the simulated
values are within 5% of the means.

Figure 2 shows the average detection delay versus mean
time to false alarm for all of the detection methods mentioned
in this paper. As evidenced by the crossing of the Shewhart
and meanshift plots, for small values of mean time to false
alarm, the meanshift test performs better than the Shewhart
test. It can be verified from QCD theory that the slope of
Delay versus log(mean time to false alarm) for the Shewhart
and CuSum tests is given by 1

D(fσ
(m,n)

‖ f∞) for large mean

time to false alarm [11].

From the plots, we conclude that for the same value of
mean time to false alarm, both CuSum-based algorithms have
a much lower average detection delay compared to the She-
whart and meanshift algorithms. In addition, the figure shows
that when we use varied thresholds for the CuSum test as op-
posed to a fixed threshold, even lower detection delay can be
achieved for the same mean time to false alarm. This illus-
trates that our algorithm is an improvement over that of [9].
Lastly, simulation results demonstrate that the detection de-
lay scales exponentially with the selected thresholds for both
the meanshift and Shewhart tests, and linearly for the CuSum-
based tests.
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Fig. 2. Detection delay vs. mean time to false alarm.
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