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ABSTRACT

The core component of a cognitive radio is its detector. When a
device is equipped with multiple antennas, the detection method is
usually based on an eigenvalue analysis. This paper explores the
performance of the most common largest eigenvalue detector, for the
case of a narrowband temporally white signal and calibrated receiver
noise. In contrast to popular Gaussian assumption, our performance
bounds are valid for any signal and noise that belong to the wide
class of sub-Gaussian random processes. Moreover, the results are
given in closed-form for any finite number of observations and an-
tennas, in contrary to the widespread asymptotic analysis approach.

Index Terms— Sensor array, cognitive radio, random matrix,
Chernoff bound, sub-Gaussian random variables

1. INTRODUCTION

The problem of detecting the presence of an unknown wireless signal
using a multi-antenna sensor prompted the emerging field of cogni-
tive radio (CR). CR refers to attempts to improve the current under-
utilization of the limited radio electromagnetic spectrum [1–3]. To
achieve this goal radios need to be equipped with smart sensing ca-
pabilities that allow them to decide when and how to transmit so as
to minimize interference with other signals.

The detection problem is more difficult when the structure of the
transmitted signal cannot be utilized by the receiver. This is the case
either when the nature of the signal is unknown at the receiver, or
when low signal-to-noise-ratio (SNR) due to shadowing, fading, re-
flection and/or propagation losses do not allow synchronization with
the signal’s pilot features [4]. All these scenarios are common in CR
applications, which forces the receiver to assume a general unknown
signal pattern and apply robust blind detection schemes [5, 6].

The use of multiple receive antennas greatly improves receiver
performance. It makes it possible to gather more data samples per
time interval, exploit the spatial structure of the received signals and
apply schemes that are robust to noise uncertainties. In CR applica-
tions, a multi-antenna array is usually employed and yields a spatial
diversity gain, especially in a multiapath urban environment.

Many recent papers [7–18] have put forward versions of the
multi-antenna detector. The differences have to do with the outcome
of different assumptions regarding the signal and noise models. Most
of these detectors were developed using a generalized likelihood ra-
tio test (GLRT) approach while assuming a Gaussian noise and sig-
nal, which leads to random matrix analysis, and more specifically
to an analysis of the eigenvalues of the sample covariance matrix
(SCM). The most basic detector is obtained by assuming a tempo-
rally white signal of interest and a calibrated white additive Gaussian
noise (AWGN) at the receiver, where the obtained GLRT statistic is
the largest eigenvalue of the SCM (λ̂1) [7, section III-B]. Here, we

focus on the performance of this basic detector, which also acts as
a constant false-alarm rate (CFAR) detector when a fixed decision
threshold is used.

When analyzing the performance of blind multi-antenna de-
tectors, previous papers have assumed Gaussian receiver noise and
transmitted signals. Most of them, for example [12, 15, 19–21],
turned to large matrix techniques, which are based on earlier asymp-
totic results by Johnstone [22] and Baik [23]. For finite sample
problems these methods yield a Tracy-Widom approximation for
the false-alarm probability (PFA) and a Gaussian approximation
for the misdetection probability (PMD). The exact PFA of the λ̂1

detector in the presence of AWGN can be calculated using the result
in Khatri [24], and [25] provides an efficient way to evaluate it.
Tropp [26, Theorem 5.1] presented a friendly upper bound on PFA

for any noise distribution, as long as the largest eigenvalue of the in-
stantaneous SCM is upper bounded almost surely. Hence, it cannot
be applied to unbounded random variables (RV) such as Gaussian
and sub-Gaussian (SG) RVs.

In this paper, we investigate the performance of the λ̂1 detector
for signals and noise that belong to the more general family of SG
RVs. The class of SG RVs contains all RVs whose moment generat-
ing function (MGF) is bounded by the MGF of a centered Gaussian
RV [27]. This is a convenient and fairly wide class that includes, for
example, the centered Gaussian and the Gaussian mixture. It also
includes all bounded RVs, and in particular all constant envelope
signals such as FM radio, a QPSK modulated signal, a polynomial-
phase [28] or a chirp [29,30], which are all commonly implemented
by communication applications and active radars.

The main contributions of this paper are new non-asymptotic
upper bounds on false-alarm and misdetection probabilities for the
λ̂1 detector, for a SG transmitted signal and SG noise. These upper
bounds can be used to lower bound the receiver operation character-
istic (ROC) curve, hence guaranteeing a minimum level of perfor-
mance for any practical finite sample problem.

This paper is organized as follows. Section 2 formulates the de-
tection problem and the λ̂1 detector. The new non-asymptotic error
bounds are introduced and proved in Section 3. Section 4 presents
a comparison of the bounds against simulation results. Finally, con-
clusions are drawn in section 5.

2. PROBLEM FORMULATION

Assume that we have a narrowband signal impinging on a set of M
antennas. The received signal at the i-th channel at time t can be
described by its complex envelope waveform,

xi(t) = his(t) + vi(t)
i = 1, . . . , M
t0 < t < t1

(1)
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where s(t) is the transmitted signal, which is assumed to follow a
zero-mean circular symmetric complex σ2

s -SG distribution, and to
be temporally white. hi is the complex response of the i-th chan-
nel, which is unknown at the receiver, and depends on the electro-
magnetic scattering and path loss. vi(t) is the additive zero-mean
circular symmetric complex white σ2

w-SG noise of the i-th channel,
where noises of different channels are assumed to be calibrated and
uncorrelated. Equation (1) can be expressed in vector form by

x(t) = hs(t) + v(t) t0 < t < t1 (2)

where x (t) = [x1 (t) , . . . , xM (t)]T is the received data, h =

[h1, . . . , hM ]T is the unknown complex response of the different
channels, and v(t) = [v1(t), . . . , vM (t)]T is a spatially uncorre-
lated noise vector.

The detector has to decide whether the transmitted signal s(t)
exists in the measurement or only noise is sensed. Formally, the
detector needs to distinguish between the following two hypotheses:

H0 : x(t) = v(t)

H1 : x(t) = v(t) + hs(t)
(3)

The sampled versions of (2) and (3) are given by

x[n] = hs[n] + v[n] n = 1, 2, ∙ ∙ ∙ , N (4)

H0 : x[n] = v[n]

H1 : x[n] = v[n] + hs[n]
(5)

Without loss of generality, we assume a normalized noise power
E
{
|vi[n]|2

}
= 1, and denote the transmitted power by Γ ,

E
{
|s[n]|2

}
. The received SNR is given by ‖h‖2Γ. The M × M

covariance matrix of v[n] is the identity matrix Rv = I . We can
represent the hypothesis test in (5) using the expected covariance
matrixRx = E

{
x[n]xH [n]

}
:

H0 : x[n] ∼ P0 (I)

H1 : x[n] ∼ P1

(
I + ΓhhH

) (6)

where P0 (R) and P1 (R) are centered SG random distributions
with covariance matrixR. Let us also denote the SCM by

R̂x ,
1

N
XXH =

1

N

N∑

n=1

x[n] ∙ xH [n] =
1

N

N∑

n=1

R̂x[n] (7)

whereX = [x[1], ∙ ∙ ∙ ,x[N ]] is a M×N matrix that contains all the
samples of the received signals. R̂x is a random matrix, and in the
Gaussian case its distribution is known as the Wishart distribution.

In this paper, we investigate the performance of the largest
eigenvalue detector. It is defined by

T (X) = λ1

(
R̂x

)
, λ̂1

H1

≷
H0

δ (8)

where λ1

(
R̂x

)
denotes the largest eigenvalue of R̂x, and δ is the

decision threshold.

Let the unitary matrix U = [u1, ∙ ∙ ∙ ,uM ] be a basis of eigen-
vectors of Rx for H1 where u1 = h

‖h‖ . Multiplying the measure-

ment by UH we obtain a diagonal model, in which the received

signal is described by

y[n] = UHx[n] = UHhs[n] +UHv[n] = e1‖h‖s[n] +w[n]

(9)

where e1 = [1, 0, ∙ ∙ ∙ , 0]T is a unit vector and w[n] is still a
spatially and temporally white zero mean normalized noise vector.
Moreover, since the SG distribution is rotation invariant, then wi[n]
is also a σ2

w-SG RV. The diagonal covariance matrix of the received
signal for the H1 hypothesis is given by

Ry =‖h‖2Γ [e1,0, ∙ ∙ ∙ ,0] + I (10)

The hypothesis test of the diagonal model is given by

H0 : y[n] = w[n]

H1 : y[n] = w[n] + e1‖h‖s[n]
(11)

or using a covariance matrix representation,

H0 : y[n] ∼ P0 (I)

H1 : y[n] ∼ P1

(
I + ‖h‖2Γ [e1,0, ∙ ∙ ∙ ,0]

) (12)

Since λ1

(
R̂x

)
= λ1

(
R̂y

)
, in terms of performance of the largest

eigenvalue detector defined by (8), the diagonal problem defined by
(11) and (12) is equivalent to the original problem defined by (5) and
(6). Therefore, without loss of generality, we work with the equiv-
alent diagonal model described by (11) and (12), where the input
samples of the detector are Y = [y[1], ∙ ∙ ∙ ,y[N ]]. Note that the
transformation U is unknown to the receiver, and it is only used to
simplify the analysis of the detector’s performance. For easier read-
ability, we omit the y notation from the covariance matrixR ≡ Ry ,
and also denote Ri , R Hi. Hence, the misdetection and false-
alarm probabilities of the largest eigenvalue detector are defined by

PMD , P
{

λ1

(
R̂1

)
< δ
}

PFA , P
{

λ1

(
R̂0

)
> δ
} (13)

3. NEW PERFORMANCE BOUNDS

Theorem 1 (First diagonal Chernoff PMD upper bound). For the
detection problem defined by (11), the misdetection probability of
the largest eigenvalue detector defined by (13) is upper bounded by

PMD ≤ exp

[

−2Nθ

(

1 −
δ

1 + ‖h‖2Γ

)

+
1

2
σ2

1θ2

]

(14)

where δ is the decision threshold, N is the number of observations
per channel, h is the channel vector, Γ is the power of the transmitted
signal,

(
σ2

1 , B1

)
are the SE parameters of 2N

1+‖h‖2Γ
R̂1[1, 1] and

θ = min

{
2N

σ2
1

(

1 −
δ

1 + ‖h‖2Γ

)

, B1

}

(15)

Theorem 2 (Gershgorin-Chernoff PFA upper bound). For the de-
tection problem defined by (11), the false-alarm probability of the
largest eigenvalue detector defined by (13) is upper bounded by

PFA ≤ exp

(

−
Nθδ

σ2
w

)

∙ M ∙ 16M−1

[

1 −

(
M − 1

2
θ2 + θ

)]−N

(16)
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where δ is the decision threshold, N is the number of observations
per channel, M is the number of channels, σ2

w is the SG parameter
of the noise and

θ =
1

M − 1
∙ min






√
2M − 1 − 1,

1 − M − δ
σ2

w
+

√

M2 + 2M
(

δ
σ2

w

)2

− 2M −
(

δ
σ2

w

)2

+ 1

δ/σ2
w






(17)

Remark 1. A practical threshold should be chosen in the range:

1 < δ < 1 + ‖h‖2Γ

Remark 2. Since σ2
1 ∝ N , the PMD bound in (14) decays exponen-

tially as N increases.

Remark 3. It can be shown that the PFA bound in (16) decays
exponentially as the number of samples N grows. If the number
of antennas M also grows, then exponential decay is guaranteed if
N = Ω

(
M2
)
.

Remark 4. If the noise probability distribution function (PDF) is
symmetric, then the PFA bound in (16) above can be reduced by a
factor of 4M−1.

Before proving Theorems 1 and 2, we note some necessary prop-
erties of SG and sub-exponential (SE) RVs (see [27]):

Lemma 1 (sub-Gaussian and sub-exponential properties). For X
centered σ2

x-SG RV, Y centered σ2
y-SG RV, α ∈ R, δ > 0, if X and

Y are independent and MX(θ) denotes the MGF of X , then:

1. MX(θ) ≤ exp
(

1
2
σ2

Xθ2
)

2. αX is a centered α2σ2
X -SG RV.

3. (X + Y ) is a centered (σ2
X + σ2

Y )-SG RV.

4. X2 is a
(
σ2

X2 , BX2

)
-SE RV with μX2 mean.

5. MX2(θ) ≤
(
1 − 2θσ2

X

)−1/2
for 0 < θ <

(
2σ2

X

)−1

≤ exp

{

θμX2 +
1

2
σ2

X2θ2

}

for θ < BX2

6. αX2 is a
(
α2σ2

X2 ,
B

X2

α

)
-SE RV.

7. (X2 + Y 2) is a
(
σ2

X2 + σ2
Y 2 , min {BX2 , BY 2}

)
-SE RV.

Proof of Theorem 1. We start by pointing out that the largest sample
eigenvalue λ̂1 is always equal or greater than any diagonal element
of the SCM, and specifically greater than the first diagonal element
R̂1[1, 1]. This is easily proved by taking

R̂[1, 1] = eT
1 R̂e1 ≤ ‖e1‖

2 λ̂1 = λ̂1 (18)

As a result,

PMD = P
{

λ1

(
R̂1

)
< δ
}
≤ P

{
R̂1[1, 1] < δ

}
(19)

where

R̂1[1, 1] =
1

N

N∑

n=1

∣
∣‖h‖s[n] + w1[n]

∣
∣2 (20)

Since both the signal and noise samples follow a SG distribution,
2N

1+‖h‖2Γ
R̂1[1, 1] is a

(
σ2

1 , B1

)
-SE RV. Using property 5 in Lemma

1 it is straightforward to obtain (14) as the Chernoff bound on the
CDF of R̂1[1, 1], with the constraint θ < B1. Finally, by differen-
tiating the bound in (14) with respect to θ, we can find the optimal
value of θ which is given in (15).

Proof of Theorem 2. First, we use Gershgorin’s circle theorem. It
states that every eigenvalue of a complex matrix A lies within at
least one of the Gershgorin discs D (aii, Ri), where aii is the i-
th diagonal element, and Ri =

∑
j 6=i |aij | is sum of the absolute

values of the non-diagonal entries in the i-th row. The rightmost
Gershgorin disc may be used to upper bound the largest eigenvalue

λ̂1 ≤ max
1≤i≤M





R̂0[i, i] +

∑

j 6=i

∣
∣
∣R̂0[i, j]

∣
∣
∣





(21)

where the maximization is over the matrix rows. Second, we apply a
union bound over the identically distributed rows of R̂0, and obtain

PFA = P
{

λ1

(
R̂0

)
> δ
}

≤ M ∙ P

{

R̂0[1, 1] +

M∑

j=2

∣
∣
∣R̂0[1, j]

∣
∣
∣ > δ

}
(22)

Third, we develop a Chernoff bound on (22). For θ > 0, we get

PFA ≤ e−θδ ∙ M ∙ E
{

eθ(R̂0[1,1]+
∑M

j=2|R̂0[1,j]|)
}

︸ ︷︷ ︸
,E1

(23)

In order to get rid of the dependence between R̂0[1, 1] and R̂0[1, j]
in E1, we use the law of total expectation:

E1 = E
{

eθR̂0[1,1] ∙ E
(
eθ
∑M

j=2|R̂0[1,j]| {w1[n]}N
n=1

)}

= E

{

eθR̂0[1,1] ∙
[
E
(
eθ|R̂0[1,2]| {w1[n]}N

n=1

)]

︸ ︷︷ ︸
,E(eθ|Z|)≡ M|Z|(θ)

M−1
}

(24)

Since R̂0[1, 2] ≡ 1
N

∑N
n=1 w1[n]w∗

2 [n], using properties 2 and
3 in Lemma 1, Z is a zero mean complex 2σ2

Zσ2
w-SG RV where

2σ2
Z ,

1
N2

∑N
n=1 |w1[n]|2 = 1

N
R̂0[1, 1]. We can express Z as

the sum of its real part Zr and its imaginary part jZi, where each
of Zr, Zi is a zero mean real σ2

Zσ2
w-SG RV. Then, using the triangle

inequality we obtain

M|Z|(θ) ≤ E
[
eθ(|Zr |+|Zi|)

]
= E2

[
eθ|Zr |

]
= M2

|Zr| (θ) (25)

Using the MGF definition it is easy to show that

M|Zr |(θ) ≤ 2MZr (θ) + 2MZr (−θ) (26)

and together with property 1 in Lemma 1 we get

M|Zr|(θ) ≤ 4 exp

(
1

2
θ2σ2

Zσ2
w

)

= 4 exp

(
1

4
θ2 σ2

w

N
R̂0[1, 1]

)

(27)
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Substituting (27) with (25) back into (24) we obtain

E1 ≤ E

{

eθR̂0[1,1] ∙

[

4 exp

(
1

4
θ2 σ2

w

N
R̂0[1, 1]

)]2(M−1)
}

= 16M−1E

{

exp

[(
M − 1

4N2
σ4

wθ2 +
σ2

w

2N
θ

)
2N

σ2
w

R̂0[1, 1]

]}

= 16M−1M 2N
σ2

w
R̂0[1,1]

(
M − 1

4N2
σ4

wθ2 +
1

2N
σ2

wθ

)

(28)

Substituting (28) into (23) we get

PFA ≤ exp

(

−
Nθδ

σ2
w

)

M ∙ 16M−1M 2N
σ2

w
R̂0[1,1]

(
M − 1

4
θ2 +

θ

2

)

(29)

where θ > 0. Since the noise samples follow a SG distribution,
2N
σ2

w
R̂0[1, 1] is a sum of 2N i.i.d. 1-SE RVs. Using property 5 in

Lemma 1, (16) is reached with the constraint 0 < θ <
√

2M−1−1
M−1

.
Finally, by differentiating the bound in (16) with respect to θ, we can
find the optimal value of θ which is given in (17).

4. SIMULATION RESULTS

The bounds given in Theorem 1 and Theorem 2 may be applied to
any circular symmetric SG transmitted signal and receiver noise.
Here we present simple examples of such signals to compare the
bounds against a Monte-Carlo simulation.

To test the bound on PMD , let both the transmitted signal and the
noise follow a complex Gaussian distribution. It can be shown that
the SE parameters of 2N

1+‖h‖2Γ
R̂1[1, 1] are

(
σ2

1 = 8N, B1 = 1/4
)
.

To test the bound on PFA, let the noise samples be a combi-
nation of a two independent RVs, a complex Gaussian RV and a
complex uniform RV:

wi[n] = νi[n] + ui[n] (30)

where νi[n] is a centered complex Gaussian RV with a variance
equal to 1/2, and ui[n] is a centered complex uniform RV with

<{ui[n]},={ui[n]} ∈
[
−
√

3/4,
√

3/4
]

whose variance also

equals 1/2. It is easy to show that wi[n] is a 1-SG RV.
We simulated SNRs of Γ ∈ {0dB,−15dB}, normalized channel

coefficients ‖h‖2 = M, an antenna array of size M = 4 and a
number of samples N ≤ 105. For each number of samples, we
evaluated 105 random experiments.

Figure 1 (a) shows the misdetection probability, and Figure 1
(b) shows the false alarm probability as a function of the number
of samples, for a fixed decision threshold. Both bounds exhibit a
steep exponential slope as the number of samples grows, and for a
given low error rate in both cases the gap between the bound and
simulation result is less than a factor of 4 in the number of samples.

5. CONCLUSION

The performance of the largest eigenvalue detector was investigated
for the case of temporally white signals and calibrated noise power.
We derived new closed-form error upper bounds that can be evalu-
ated for any finite number of measurements (samples), and may be
used to ensure a minimum performance level. Unlike similar contri-
butions, we did not use the common Gaussian assumption, and our
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Fig. 1. Detector performance bounds as function of the num-
ber of samples against simulation results for M = 4 and Γ ∈
{0dB,−15dB}.

results are valid for the broad class of SG RVs. The bounds were
compared to simulation results, and proved to be informative. Our
contribution should be useful for cognitive radio, multistatic passive
radar and any application that requires detection based on an eigen-
value analysis, especially when the transmitted signal or noise do not
obey a strictly Gaussian distribution.
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