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ABSTRACT

Estimating the directions of arrival (DOA) of coexisting circular and

strictly second-order (SO) non-circular (NC) signals has recently

emerged as an active field of research. In previous work, we have

proposed two ESPRIT-type algorithms, i.e., C-NC Standard ESPRIT

and C-NC Unitary ESPRIT, for this scenario that improve the esti-

mation accuracy of the conventional schemes and increase the num-

ber of resolvable signals. In this paper, we present a first-order per-

formance assessment of these two ESPRIT-type algorithms. Specif-

ically, we derive closed-form mean square error (MSE) expressions

that are asymptotic in the effective signal-to-noise ratio (SNR), i.e.,

the approximations become exact for either high SNRs or a large

sample size. Apart from a zero mean and finite SO moments, no fur-

ther assumptions on the noise statistics are required. We show that

both algorithms perform identical in the high effective SNR regime.

Moreover, the analytical results verify the previously observed prop-

erty that the presence of strictly non-circular sources improves the

estimation accuracy of the circular signals.

Index Terms— ESPRIT, non-circular sources, mixture, DOA

estimation.

1. INTRODUCTION

High resolution direction of arrival (DOA) estimation has long been

a fundamental research area in the field of array signal processing.

Such a task arises in a wide range of applications including radar,

sonar, channel sounding, and wireless communications. In some

of these applications, the received signals exhibit a strictly second-

order (SO) non-circular (NC) structure [1]. Examples of digital

modulation schemes that use such signals are BPSK, PAM, Offset-

QPSK, ASK, etc. Previous work has shown that taking advantage of

the strict non-circularity of the impinging signals helps to improve

the performance of traditional parameter estimation algorithms. This

observation has sparked the development of a number of improved

subspace-based parameter estimation schemes such as NC MUSIC

[2], NC Root-MUSIC [3], NC Standard ESPRIT [4], and NC Unitary

ESPRIT [5], [6]. It has been reported that these methods efficiently

exploit the prior knowledge of the signals’ strict non-circularity, thus

providing a significant improvement in the estimation accuracy and

doubling the number of resolvable sources [6].

The observed benefits associated with NC sources have raised a

considerable research interest in the analytical performance evalua-

tion of the NC DOA algorithms in order to quantify the achievable

improvements objectively. As a result, the performance of NC MU-

SIC as well as NC Standard ESPRIT and NC Unitary ESPRIT has
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been investigated in [2], [6], and [7]. One of the most prominent

performance assessment concepts in [8] along with [9], which pro-

vides the basis for the studies in [6], yields an explicit first-order

approximation of the estimation error caused by the perturbed sub-

space estimate due to a small noise contribution. It is asymptotic

in the effective signal-to-noise ratio (SNR), i.e., the expressions be-

come exact for either high SNRs or a large sample size. Moreover,

for the resulting mean square error (MSE) expressions, no further

assumptions on the noise statistics apart from a zero mean and finite

SO moments are required. This analysis allows to explicitly assess

the achievable asymptotic performance of the NC algorithms.

However, as the mentioned NC algorithms rest on the assump-

tion that all the signals are strictly non-circular, they cannot handle

the more general case of coexisting circular and strictly non-circular

signals. In recent years, several parameter estimation schemes based

on spectral MUSIC [10]-[12] and ESPRIT [13] have been proposed

for this mixed signal scenario. The latter is particularly appealing

as it provides closed-form estimates while requiring a low complex-

ity. It was shown that the methods [10]-[13] perform better than the

non-NC schemes and simultaneously increase the number of resolv-

able signals. Inspired by [14], a deterministic Cramér-Rao bound

has been developed in [15] as a benchmark for the mixed signal sce-

nario. However, an analytical performance assessment of the algo-

rithms has not been reported in the literature to date.

In this paper, we present a performance analysis of the 1-D C-

NC Standard/Unitary ESPRIT algorithms [13] for coexisting cir-

cular and strictly non-circular signals. For both algorithms, least

squares (LS) is used to solve the shift-invariance equations. We de-

rive closed-form first-order expansions for the estimation error in

terms of the noise realization and generic MSE expressions based on

the concepts from [8] and [9]. Similarly to the NC signal only case,

it is shown that C-NC Standard ESPRIT and C-NC Unitary ESPRIT

perform identically in the high effective SNR regime. Moreover, by

numerical evaluation of the analytical expressions, we verify the pre-

viously observed property that the presence of NC sources improves

the estimation accuracy of the circular sources.

2. DATA MODEL

Suppose that d planar wavefronts emitted by narrowband sources in

the far field are received by a shift-invariant-structured array com-

posed of M identical elements. The observations at N snapshots are

collected in the measurement matrix

X = AS +N ∈ C
M×N , (1)

where the array steering matrix A = [a(µ1), . . . ,a(µd)] ∈ C
M×d

consists of the array steering vectors a(µi) corresponding to the i-th
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spatial frequency µi, i = 1, . . . , d. Moreover, S ∈ C
d×N is the

symbol matrix and N ∈ C
M×N represents the additive zero-mean

sensor noise.

In order to model the mixture of strictly non-circular and cir-

cular signals, we partition S into S = [ST
nc,S

T
c ]

T. Thus, Snc ∈

C
d(nc)×N and Sc ∈ C

d(c)×N represent the symbol matrices of the

d(nc) strictly non-circular and the d(c) circular signals, respectively,

such that d(nc) + d(c) = d. Then, we virtually decompose each of

the circular sources into two strictly non-circular sources with the

same DOA [13]. Therefore, the symbol matrix S can be written as

S =

[

Ψ
(nc)

0

0
[

Id(c) jId(c)
]

]





S0

SR

SI



 = ΨS̃, (2)

where Ψ
(nc) = diag{ejϕk}d

(nc)

k=1 represents the rotation phases cor-

responding to the strictly non-circular and circular sources, respec-

tively. Additionally, we have Ψ ∈ C
d×d̃ with d̃ = d(nc) + 2d(c)

and the real-valued matrix S̃ ∈ R
d̃×N contains the symbols of the

strictly non-circular sources S0 ∈ R
d(nc)×N as well as the real and

imaginary parts SR ∈ R
d(c)×N and SI ∈ R

d(c)×N of the circular

signals, respectively.

Inserting (2) into (1) and splitting A = [Anc,Ac] with Anc ∈

C
M×d(nc) and Ac ∈ C

M×d(c) , the model in (1) can be expressed as

X = ÃS̃ +N , (3)

where Ã = AΨ ∈ C
M×d̃ is the modified array steering matrix.

The new column dimensions of Ã again indicate the virtual decom-

position of the circular sources into pairs of non-circular sources.

Applying ESPRIT-type algorithms, we require A to be shift-

invariant, i.e., J1AΦ = J2A, where J1, J2 ∈ R
M(sel)

×M are the

selection matrices and Φ = diag{ejµi}di=1 ∈ C
d×d contains the

desired spatial frequencies. It is straightforward to see that in this

case, Ã is also shift-invariant so that J1ÃΓ = J2Ã, where the

diagonal matrix Γ ∈ C
d̃×d̃ contains the d̃ spatial frequencies.

3. REVIEW OF C-NC STANDARD ESPRIT

In order to take advantage of the strict non-circularity of the d(nc)

sources, we apply the following preprocessing scheme to (3) by

defining the augmented measurement matrix X(nc) ∈ C
2M×N sim-

ilarly to [5], [6] as

X
(nc) =

[

X

ΠMX∗

]

=

[

Ã

ΠMÃ∗

]

S̃ +

[

N

ΠMN∗

]

(4)

= A
(nc)

S̃ +N
(nc) = X

(nc)
0 +N

(nc), (5)

where ΠM is the M × M exchange matrix with ones on its anti-

diagonal and zeros elsewhere, A(nc) ∈ C
2M×d̃ is the virtual steering

matrix, and X
(nc)
0 ∈ C

2M×N is the noise-free augmented measure-

ment matrix. It can then be shown that the augmented array steering

matrix A(nc) also possesses the shift-invariance structure, i.e.,

J
(nc)
1 A

(nc)
Γ = J

(nc)
2 A

(nc), (6)

where the selection matrices J
(nc)
1 ,J

(nc)
2 ∈ R

2M(sel)
×2M are de-

fined by

J
(nc)
1 =

[

J1 0

0 Π
(sel)
M J2ΠM

]

, J
(nc)
2 =

[

J2 0

0 Π
(sel)
M J1ΠM

]

.

As A(nc) is unknown, the augmented signal subspace Û
(nc)
s ∈

C
2M×d̃ is often estimated by computing the d̃ dominant left singu-

lar vectors from the augmented measurement matrix X(nc) in (5).

Then, a non-singular matrix T ∈ C
d̃×d̃ can be found such that

A(nc) ≈ Û
(nc)
s T . Using this relation, the augmented shift invari-

ance equation is rewritten as

J
(nc)
1 Û

(nc)
s Υ ≈ J

(nc)
2 Û

(nc)
s , (7)

where Υ ≈ TΓT−1. Equation (7) can be solved for the unknown

matrix Υ ∈ C
d̃×d̃ using least squares (LS), i.e.,

Υ̂ =
(

J
(nc)
1 Û

(nc)
s

)+

J
(nc)
2 Û

(nc)
s , (8)

where (·)+ denotes the Moore-Penrose pseudo inverse. Finally,

the desired d̃ spatial frequency estimates are extracted via µ̂n =

arg{λ̂n}, n = 1, . . . , d̃, where λ̂i are the eigenvalues of Υ̂.

As we obtain d̃ = d(nc) + 2d(c) instead of d = d(nc) + d(c)

spatial frequency estimates due to the decomposition in (2), we have

proposed in [13] to combine the two correctly paired estimates for

each circular source by averaging them according to

µ̂ℓ =
1

2

(

µ̂
(1)
ℓ + µ̂

(2)
ℓ

)

, ℓ = 1, . . . , d(c). (9)

Assuming d(nc) and d(c) known, the two estimates for each circu-

lar source can be identified by taking the d(c) pairs among all the

estimates that are closest to each other.

4. PERFORMANCE OF C-NC STANDARD ESPRIT

For the performance analysis, we adopt the analytical framework

proposed in [6], which is based on [8], [9]. Therein, an explicit first-

order estimation error approximation is derived assuming that the

noise-free signal is superimposed by a small additive noise perturba-

tion, which is zero-mean with finite SO moments. As the structure of

X(nc) in (5) after the preprocessing scheme for non-circular sources

is very similar to that in [6], the development for the analytical ex-

pressions from [6] is also applicable to the model in (5).
We first derive the signal subspace estimation error due to the

small additive perturbation N (nc). To this end, we consider X
(nc)
0

and extract its noise-free subspaces as

X
(nc)
0 =

[

U
(nc)
s U

(nc)
n

]

[

Σ
(nc)
s 0

0 0

]

[

V
(nc)
s V

(nc)
n

]H
, (10)

where U
(nc)
s ∈ C

2M×d̃, U
(nc)
n ∈ C

2M×(2M−d̃), and V
(nc)
s ∈

C
N×d̃ span the signal subspace, the noise subspace, and the row

space, respectively. Moreover, Σ
(nc)
s ∈ R

d̃×d̃ contains the non-zero

singular values on its diagonal. Writing the estimated signal sub-

space as Û
(nc)
s = U

(nc)
s + ∆U

(nc)
s , where ∆U

(nc)
s denotes the

subspace estimation error, we get the first-order approximation [6]

∆U
(nc)
s = U

(nc)
n U

(nc)H

n N
(nc)

V
(nc)
s Σ

(nc)−1

s +O{∆2}, (11)

where ∆ = ‖N (nc)‖, and ‖ · ‖ represents a submultiplicative norm.

Then, the first-order approximation for the parameter estimation

error ∆µi = µ̂i − µi of C-NC Standard ESPRIT for the i-th spatial

frequency can be written as

∆µi = Im

{

p
T
i

(

J
(nc)
1 U

(nc)
s

)+ [

J
(nc)
2 /λi

−J
(nc)
1

]

∆U
(nc)
s qi

}

+O{∆2}, (12)
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where λi = ejµi is the i-th eigenvalue of Υ, qi represents the i-
th eigenvector of Υ and the i-th column vector of the eigenvector

matrix Q, and pT
i is the i-th row vector of P = Q−1. Hence,

the eigendecomposition of Υ is given by Υ = QΛQ−1, where Λ

contains the eigenvalues λi on its diagonal. Inserting (11) into (12),

we can write (12) explicitly in terms of the noise perturbation N (nc),

i.e.,

∆µi = Im
{

r
(nc)T

k W
(nc)

n
(nc)
}

+O{∆2}, (13)

where n(nc) = vec{N (nc)} ∈ C
2MN×1,

r
(nc)
i = q

(nc)
i ⊗

([

(

J
(nc)
1 U

(nc)
s

)+

·
(

J
(nc)
2 /λi − J

(nc)
1

)]T

p
(nc)
i

)

∈ C
2Md̃×1, (14)

and

W
(nc) =

(

Σ
(nc)−1

s V
(nc)T

s

)

⊗
(

U
(nc)
n U

(nc)H

n

)

∈ C
2Md̃×2MN .

It is worth mentioning that (12) holds for all the d̃ virtual spatial

frequencies. However, in order to compute the MSE, we need to

distinguish between the strictly non-circular and the circular sources.

This is due to the different processing for the circular sources, which

includes the pairing of the two estimates for each circular source as

well as their subsequent averaging. Note that the step of finding the

correct pairing is not included in the presented performance analysis

as this step never fails in the high effective SNR regime.

4.1. MSE of the Strictly Non-Circular Sources

The final MSE expression for the d(nc) strictly non-circular sources

follows the results in [6]. Hence, the MSE for the k-th spatial fre-

quency associated with the k-th non-circular source is given by

E
{

(∆µk)
2} =

1

2

(

r
(nc)H

k W
(nc)∗

R
(nc)T

nn W
(nc)T

r
(nc)
k

−Re
{

r
(nc)T

k W
(nc)

C
(nc)T

nn W
(nc)T

r
(nc)
k

})

+O{∆2}. (15)

The expressions for the covariance matrix R
(nc)
nn = E{n(nc)n(nc)H}

and the pseudo-covariance matrix C
(nc)
nn = E{n(nc)n(nc)T} were

derived in [6] and can be expressed in terms of the SO statistics of

the physical noise n = vec{N} ∈ C
MN×1. They are given by

R
(nc)
nn = K̃

[

Rnn Cnn

C∗

nn R∗

nn

]

K̃
T, C

(nc)
nn = K̃

[

Cnn Rnn

R∗

nn C∗

nn

]

K̃
T,

where Rnn = E{nnH}, Cnn = E{nnT}, and K̃ = KT
2M,N ·

blkdiag{KM,N ,KM,N (IN⊗ΠMsub)} with KM,N ∈ R
MN×MN

being the commutation matrix that satisfies KM,N · vec{A} =
vec{AT} for arbitrary matrices A ∈ C

M×N [16].

4.2. MSE of the Circular Sources

For the MSE of the circular sources, we first take into account the av-

eraging of the two correctly paired estimates for each circular source

by computing

E

{(

µ̂
(1)
ℓ + µ̂

(2)
ℓ

2
− µℓ

)2}

= E

{(

∆µ̂
(1)
ℓ +∆µ̂

(2)
ℓ

2

)2}

=
1

4

(

E

{

(∆µ̂
(1)
ℓ )2

}

+ E

{

(∆µ̂
(2)
ℓ )2

}

+ 2·E
{

∆µ̂
(1)
ℓ ∆µ̂

(2)
ℓ

})

.

(16)

The first two terms of (16) can be calculated straightforwardly ac-

cording to (15). The last term E

{

∆µ̂
(1)
ℓ ∆µ̂

(2)
ℓ

}

represents the

cross-correlation of the two estimates, which can be computed as

follows:

Theorem 1. Assuming that N (nc) is zero-mean with finite SO

moments, the first-order approximation of the cross-correlation

between ∆µ̂
(1)
ℓ and ∆µ̂

(2)
ℓ is given by

E

{

∆µ̂
(1)
ℓ ∆µ̂

(2)
ℓ

}

=
1

2

(

r
(nc)H

ℓ(1)
W

(nc)∗
R

(nc)T

nn W
(nc)T

r
(nc)

ℓ(2)

−Re
{

r
(nc)T

ℓ(1)
W

(nc)
C

(nc)T

nn W
(nc)T

r
(nc)

ℓ(2)

})

+O{∆2}, (17)

where r
(nc)

ℓ(n) , n = 1, 2 is given analogously to (13).

Proof. To show this result, we first expand the two estimates

∆µ̂
(n)
ℓ = Im

{

r
(nc)T

ℓ(n) W (nc)n(nc)
}

, n = 1, 2 by using (13).

Then, we follow the steps of the derivation in [9] to obtain the

desired result.

Eventually, inserting (17) from Theorem 1 into (16), the MSE

for the ℓ-th spatial frequency associated with the ℓ-th circular source

can be expressed as

E
{

(∆µ̂ℓ)
2} =

1

2

(

z
H
ℓ W

(nc)∗
R

(nc)T

nn W
(nc)T

zℓ

−Re
{

z
T
ℓ W

(nc)
C

(nc)T

nn W
(nc)T

zℓ

})

+O{∆2}, (18)

where zℓ = 1
2

(

r
(nc)

ℓ(1)
+ r

(nc)

ℓ(2)

)

, which takes the averaging over the

two estimates into account.

5. PERFORMANCE OF C-NC UNITARY ESPRIT

We have shown in [6] that NC Standard ESPRIT and NC Unitary

ESPRIT designed for strictly non-circular sources enjoy the same

analytical performance in the high effective SNR case. It was es-

tablished that applying forward-backward averaging (FBA) to the

augmented matrix X(nc) does not improve the signal subspace es-

timate and that the real-valued transformation has no effect on the

asymptotic performance in the high effective SNR regime. These

properties still hold true for C-NC Standard ESPRIT and C-NC Uni-

tary ESPRIT for the mixed signal case as the preprocessing for non-

circular sources is conducted in the same way. Therefore, we can

conclude that C-NC Standard ESPRIT and C-NC Unitary ESPRIT

also perform identically in the high effective SNR.

6. SIMULATION RESULTS

In this section, we present numerical results to demonstrate the

asymptotic behavior of the analytical performance assessment of

C-NC Standard ESPRIT (C-NC SE) and C-NC Unitary ESPRIT

(C-NC UE) algorithms designed for the mixed signal scenario. To

this end, we compare the derived analytical (“ana”) MSE expres-

sions to the empirical (“emp”) estimation errors of the algorithms

obtained by averaging over Monte Carlo trials. The overall per-

formance is benchmarked by the deterministic C-NC CRB (Det

C-NC CRB) [15]. Additionally, we also include the ESPRIT-type

methods (SE/UE) [17], [18] that do not exploit the NC structure

of the strictly non-circular signals along with their analytical MSE
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Fig. 1. RMSE versus SNR for M = 8, N = 20, d(nc) = 2 sources

at µ(nc) = [0.2, 1] with ϕ(nc) = [0, π/2] and d(c) = 2 sources at

µ(c) = [0.5, 1.3].

expressions [9]. All the ESPRIT-type algorithms use LS to solve

the shift invariance equation. We employ a uniform linear array

(ULA) composed of M = 8 isotropic sensors with δ = λ/2 spac-

ing. The phase reference of the array is located at its centroid.

For the circular signals, the QPSK modulation scheme is used and

the strictly non-circular signals are generated from a real-valued

Gaussian distribution. Moreover, we assume the sensor noise to be

circularly symmetric white Gaussian with variance σ2
n. The curves

are obtained by averaging over 5000 Monte Carlo trials.

In Fig. 1, we display the total RMSE over all sources as a func-

tion of the SNR. We assume a mixture of d(nc) = 2 strictly non-

circular sources at µ(nc) = [0.2, 1] with ϕ(nc) = [0, π/2], and

d(c) = 2 circular sources at µ(c) = [0.5, 1.3]. All the sources

are uncorrelated and have unit power. The number of snapshots is

N = 20. It is apparent from Fig. 1 that the analytical curves agree

well with the empirical ones in the high SNR regime. Moreover, the

asymptotic performance of C-NC SE and C-NC UE is identical at

high SNRs. Nevertheless, C-NC UE should be preferred due to its

lower computational complexity and better performance in the low

SNR regime.

In Fig. 2, we use the same scenario but display the RMSE versus

the number of snapshots N . The SNR is fixed at 25 dB. The rotation

phases are given by ϕ(nc) = [0, π/4] and the strictly non-circular

sources have a pair-wise correlation of ρ(nc) = 0.9. We can observe

that the analytical curves and the empirical curves match well if at

least N = 20 snapshots are available. Again, C-NC SE and C-NC

UE perform asymptotically identical for a large sample size N .

In the third experiment, we consider a scenario with a vary-

ing number of strictly non-circular sources. We assume N = 20
snapshots and d = 3 uncorrelated sources at µ = [0, 0.3, 0.8] with

ϕ = [0, π/8, π/4]. The curves labeled d(nc) = 1 refer to the case,

where the first source at µ(nc) = 0 is strictly non-circular and the re-

maining sources are circular, whereas for d(nc) = 2, the two sources

at µ(nc) = [0, 0.3] are strictly non-circular and the last one is cir-

cular. In Fig. 3, we display the RMSE of C-NC SE versus the SNR

for the strictly non-circular source “(nc)” at µ1 = 0 and the circular

source “(c)” at µ3 = 0.8 under the variation of d(nc). The strictly

non-circular and the circular sources have the respective powers of

P (nc) = 20 and P (c) = 1. As can be seen, the analytical curves ver-
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Fig. 2. RMSE versus snapshots N for M = 8, SNR = 25 dB,

d(nc) = 2 sources at µ(nc) = [0.2, 1] with ϕ(nc) = [0, π/4], and

d(c) = 2 sources at µ(c) = [0.5, 1.3].
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Fig. 3. RMSE versus SNR for the strictly non-circular “(nc)” source

at µ1 = 0 and the circular “(c)” source at µ3 = 0.8 for M = 8,

N = 20, P (nc) = 20, and P (c) = 1 with varying d(nc).

ify the observation that an increasing number of strictly non-circular

sources improves the estimation accuracy of the strictly non-circular

sources as well as the circular sources.

7. CONCLUSION

In this paper, we have presented a first-order performance assess-

ment of the recently developed C-NC Standard ESPRIT and C-NC

Unitary ESPRIT algorithms for coexisting circular and strictly non-

circular sources. Specifically, we have derived closed-form MSE

expressions that are asymptotic in the effective SNR, i.e., the ap-

proximations become exact for either high SNRs or a large sample

size. Moreover, apart from a zero mean and finite SO moments, no

further assumptions on the noise statistics are required. We have

shown that both algorithms perform identical in the high effective

SNR and that the analytical results verify the previously observed

property that the presence of strictly non-circular sources improves

the estimation accuracy of the circular sources.
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[4] A. Zoubir, P. Chargé, and Y. Wang, “Non circular sources

localization with ESPRIT,” in Proc. European Conference on

Wireless Technology (ECWT 2003), Munich, Germany, Oct.

2003.

[5] M. Haardt and F. Roemer, “Enhancements of Unitary ES-

PRIT for non-circular sources,” in Proc. IEEE Int. Conf. on

Acoust., Speech, and Sig. Proc. (ICASSP), Montreal, Canada,

May 2004.

[6] J. Steinwandt, F. Roemer, M. Haardt, and G. Del Galdo,

“R-dimensional ESPRIT-type algorithms for strictly second-

order non-circular sources and their performance analysis,”

IEEE Transactions on Signal Processing, vol. 62, no. 18, pp.

4824-4838, Sep. 15, 2014.

[7] H. Abeida and J. P. Delmas, “Statistical performance of

MUSIC-like algorithms in resolving noncircular sources,”

IEEE Transactions on Signal Processing, vol. 56, no. 9, pp.

4317-4329, Sep. 2008.

[8] F. Li, H. Liu, and R. J. Vaccaro, “Performance analysis for

DOA estimation algorithms: Unification, simplifications, and

observations,” IEEE Transactions on Aerospace and Elec-

tronic Systems, vol. 29, no. 4, pp. 1170-1184, Oct. 1993.

[9] F. Roemer, M. Haardt, and G. Del Galdo, “Analytical perfor-

mance assessment of multi-dimensional matrix- and tensor-

based ESPRIT-type algorithms,” IEEE Transactions on Sig-

nal Processing, vol. 62, pp. 2611–2625, May 2014.

[10] F. Gao, A. Nallanathan, and Y. Wang, “Improved MUSIC un-

der the coexistence of both circular and noncircular sources,”

IEEE Transactions on Signal Processing, vol. 56, no. 7, pp.

3033-3038, July 2008.

[11] A. Liu, G. Liao, Q. Xu, and C. Zeng, “A circularity-based

DOA estimation method under coexistence of noncircular and

circular signals,” in Proc. IEEE Int. Conf. on Acoust., Speech,

and Sig. Proc. (ICASSP), Kyoto, Japan, March 2012.

[12] A. Ferreol and P. Chevalier, “Higher order direction finding

for arbitrary noncircular sources: The NC-2q-MUSIC algo-

rithm,” in Proc. of the European Signal Processing Confer-

ence (EUSIPCO), Aalborg, Denmark, Aug. 2010.

[13] J. Steinwandt, F. Roemer, and M. Haardt, “ESPRIT-type al-

gorithms for a received mixture of circular and strictly non-

circular signals,” in Proc. IEEE Int. Conference on Acous-

tics, Speech, and Signal Processing (ICASSP), Brisbane, Aus-

tralia, Apr. 2015.

[14] J. Steinwandt, F. Roemer, M. Haardt, and G. Del Galdo,

“Deterministic Cramér-Rao bound for strictly non-circular

sources and analytical analysis of the achievable gains”

arXiv:1504.00203, Apr. 2015.

[15] J. Steinwandt, F. Roemer, and M. Haardt, “Deterministic

Cramér-Rao bound for a mixture of circular and strictly non-

circular signals,” in Proc. International Symposium on Wire-

less Communications Systems (ISWCS), Brussels, Belgium,

Aug. 2015.

[16] J. R. Magnus and H. Neudecker, Matrix differential calculus

with applications in statistics and econometrics, John Wiley

and Sons, 1995.

[17] R. H. Roy and T. Kailath, “ESPRIT-estimation of signal pa-

rameters via rotational invariance techniques,” IEEE Trans-

actions on Acoustics, Speech, and Signal Processing, vol. 37,

no. 7, pp. 984-995, July 1989.

[18] M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to obtain

increased estimation accuracy with a reduced computational

burden,” IEEE Transactions on Signal Processing, vol. 43,

no. 5, pp. 1232-1242, May 1995.

2935


