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ABSTRACT

The problem of detecting a subspace signal is studied in col-
ored Gaussian noise with an unknown covariance matrix. In
the subspace model, the target signal belongs to a known sub-
space, but with unknown coordinates. We propose a modi-
fied Rao test (MRT) by introducing a tunable parameter. The
MRT is more general, which includes the Rao test and the
generalized likelihood ratio test as special cases. Moreover,
closed-form expressions for the probabilities of false alarm
and detection of the MRT are derived. Numerical results
demonstrate that the MRT can offer the flexibility of being
adjustable in the mismatched case where the target signal de-
viates from the presumed signal subspace. In particular, the
MRT provides better mismatch rejection capacities as the tun-
able parameter increases.

Index Terms— Adaptive detection, Rao test, subspace
signal detection, mismatched signal rejection, constant false
alarm rate.

1. INTRODUCTION

In recent years, there have been a large number of investi-
gations on the signal detection problem in colored Gaussian
noise with an unknown covariance matrix [1–7]. Typically, a
set of training (secondary) data is assumed to be available to
estimate the unknown noise covariance matrix. Many classic
detectors have been proposed, such as the generalized like-
lihood ratio test (GLRT) detector [8], adaptive matched fil-
ter (AMF) [9], and adaptive coherence estimator (ACE) [10].
These GLRT, AMF and ACE are developed for the matched
case where the target signal is perfectly matched to the as-
sumed steering vector.

∗This work was supported by the National Natural Science Foundation
of China under Contracts 61501351 and 61372132, the Program for Young
Thousand Talent by Chinese Central Government, the Program for New Cen-
tury Excellent Talents in University (NCET-13-0945), the Fundamental Re-
search Funds for the Central Universities (XJS14039), and the National Sci-
ence Fund for Distinguished Young Scholars under Grant 61525105.

†W. Liu’s work was supported by the National Natural Science Founda-
tion of China under Contract 61501505.

In practice, mismatch of the signal steering vector may
exist due to many factors such as wavefront distortions, cali-
bration and pointing errors, and imperfect antenna shape [11].
In [12], Pulsone et al. proposed an adaptive beamformer or-
thogonal rejection test (ABORT) which exhibits better mis-
match discrimination capabilities than both the GLRT and
AMF. De Maio derived a Rao test in [11], which achieves
better rejection capacities of strong mismatched signals than
the ABORT. Note that none of the above mentioned detectors
can adjust their rejection capabilities of mismatched signals.

In the above detectors, the target steering vector is a rank-
one signal. In some applications, the signal of interest is
naturally multi-rank. For example, the data collected from
multiple polarimetric channels in polarization radars can be
formulated as a subspace model for target detection [13–16].
The subspace signal model was also employed for multiuser
detection [17], and signal estimation and detection in multi-
path environments [18, 19]. Recently, Liu et al. generalized
the Rao test from the rank-1 to rank-r (r > 1) subspace sig-
nal model, and obtained a subspace version of the Rao test
in [4]. However, the theoretical performance of the subspace-
version Rao test was not examined. Moreover, one common
issue in the detectors mentioned above is that the detection
performance for matched signals and rejection performance
for mismatched signals cannot be adjusted when the target
signal has multi-rank. In practice, it is desired to offer a trade-
off between the two performance metrics for matched and,
respectively, mismatched signals.

In this paper, we examine the subspace signal detection
problem whereby the signal of interest is constrained to a
multi-rank subspace with unknown coordinates. A new mod-
ified Rao test (MRT) with a tunable parameter is proposed,
which includes the GLRT and Rao test as special cases. More-
over, we derive closed-form expressions for the probabilities
of false alarm, respectively, detection of the MRT, which are
verified by using Monte Carlo (MC) simulations. Numeri-
cal results show that the mismatched signal rejection perfor-
mance of the proposed MRT improves as the tunable param-
eter increases. Remarkably, the MRT with a large tunable
parameter can better reject mismatched signals than existing
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detectors.
Notation: Vectors (matrices) are denoted by boldface low-

er (upper) case letters. Superscripts (·)T , (·)∗ and (·)† denote
transpose, complex conjugate and complex conjugate trans-
pose, respectively. The notation ∼ means “is distributed as,”
and CN denotes a circularly symmetric, complex Gaussian
distribution. E{·} denotes the mean of a random argumen-
t. d

= means equivalence in distribution. χ2
n denotes the cen-

tral Chi-squared distribution with n degrees of freedom, while
χ′2
n (ζ) denotes the non-central Chi-squared distribution with

n degrees of freedom and a non-centrality parameter ζ. | · |
represents the modulus of a complex number, and ȷ =

√
−1.(

n
m

)
is the binomial coefficient. In is the identity matrix

of dimension n, and tr(·) is the trace of a matrix.

2. SIGNAL MODEL

Consider the following model of the test data:

x = Sa+ n, (1)

where S is a known full-rank matrix of dimension Q × q
whose columns span the subspace containing target sig-
nals; a is a deterministic but unknown coordinate vec-
tor of dimension q, accounting for the target reflectivity
and channel propagation effects; the noise n is assumed
to have a circularly symmetric, complex Gaussian distri-
bution, i.e., n ∼ CN (0,R), where R is a positive defi-
nite covariance matrix of dimension Q × Q. In practice,
the noise covariance matrix R is usually unknown. A s-
tandard assumption is that there exists a set of homoge-
neous training data free of target signal components, i.e.,
{yk|yk ∼ CN (0,R), k = 1, 2, . . . ,K and K ≥ Q}, which
can be used to estimate R.

Let the null hypothesis (H0) be that the test data are target
signal free and the alternative hypothesis (H1) be that the test
data contain the target signal. Hence, the detection problem is
to decide between the null hypothesis and the alternative one:

H0 :

{
x ∼ CN (0, R)

yk ∼ CN (0, R),
H1 :

{
x ∼ CN (Sa, R)

yk ∼ CN (0, R),

(2)
where k = 1, 2, · · · ,K.

3. MODIFIED RAO TEST

As shown above, the Rao test has the following form:

ΞRao =
TAMF

(1 + x†R̂−1x)(1 + x†R̂−1x− TAMF)

H1

≷
H0

ξRao,

(3)

where TAMF = x†R̂−1S(S†R̂−1S)−1S†R̂−1x. Recall that
the GLRT detector proposed in [20] can be written as

TGLRT =
TAMF

1 + x†R̂−1x

H1

≷
H0

tGLRT, (4)

where tGLRT is the detection threshold. Note that the only
difference between the Rao test and the GLRT is the second
term (1+x†R̂−1x−TAMF) in the denominator of (3). Based
on this observation, we propose a modified Rao test (MRT)
involving a tunable parameter as follows:

Ξ =
TAMF

(1 + x†R̂−1x)[1 + α(x†R̂−1x− TAMF)]

H1

≷
H0

ξ, (5)

where ξ is a detection threshold, α ≥ 0 is a tunable parame-
ter. Obviously, the MRT contains the GLRT and Rao test as
special cases of α = 0 and α = 1, respectively.

It should be pointed out that the analytical performance
of the Rao test is not examined in [4]. In the sequel, we
first investigate the statistical properties of the proposed MRT,
and then derive closed-form expressions for its probabilities
of false alarm and detection. Apparently, by setting α = 1 we
also fill the gap on the analytical performance of the Rao test
that is missing in [4].

Similar to [21], it can be shown that

Ξ =
TAMF

(ρ−1 + TAMF)[1 + α(ρ−1 − 1)]

H1

≷
H0

ξ, (6)

where ρ is a loss factor whose PDF is

fρ(ρ) =
K!(1− ρ)Q−q−1ρK−Q+q

(Q− q − 1)!(K −Q+ q)!
, 0 < ρ < 1. (7)

After an equivalent transformation, we have

ρTAMF
H1

≷
H0

ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)
. (8)

Similar to [22, eq. (B39)], we can derive that

ρTAMF
d
=


χ2
2q

χ2
2(K−Q+1)

, under H0

χ′2
2q(2δρ)

χ2
2(K−Q+1)

, under H1

(9)

with δ = a†S†R−1Sa. Note that to guarantee the positive-
ness of the right-hand side of (8), the value of the random
variable ρ is now restricted to the range

ξα

1− ξ + ξα
< ρ < 1. (10)

Define 2τ
d
= χ2

2(K−Q+1), and

2t
d
=

{
χ2
2q, underH0

χ′2
2q(2δρ), underH1

. (11)

Then, we obtain

ρTAMF
d
=

t

τ
. (12)
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3.1. Probability of False Alarm

Based on (8), we can obtain the probability of false alarm
conditioned on ρ as

PFA | ρ =

∫ +∞

0

(∫ +∞

ξ(ρ+α−ρα)
ρ−ξ(ρ+α−ρα)

τ

ft(t|H0) d t

)
fτ (τ |H0)d τ

=

q∑
j=1

(
K −Q+ q − j

q − j

)[
ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)

]q−j

×
[

ρ

ρ− ξ(ρ+ α− ρα)

]−(K−Q+q−j+1)

.

(13)
Therefore, the probability of false alarm of the Rao test can
be obtained by averaging over ρ, i.e.,

PFA =

∫ 1

ξα
1−ξ+ξα

PFA| ρfρ(ρ) dρ, (14)

where fρ(ρ) is given in (7). It follows that the MRT exhibit-
s the desirable constant false alarm rate (CFAR) property a-
gainst the noise covariance matrix, since the probability of
false alarm in (14) is irrelevant to the noise covariance ma-
trix.

3.2. Detection Probability

3.2.1. Matched Case

We first consider the matched case. Let

ω =
ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)
τ, (15)

where the loss factor ρ is temporarily fixed. The PDF of ω
conditioned on ρ, denoted by fω |ρ(ω), can be easily obtained
by using the PDF of τ . As a result, the probability of detection
conditioned on ρ can be obtained as

PD | ρ =

∫ +∞

0

(∫ +∞

ω

ft(t|H1)d t

)
fω |ρ(ω)dω

=1−
[

ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)

]q−1

×
[

ρ

ρ− ξ(ρ+ α− ρα)

]−(K−Q+q)

×
K−Q+1∑

j=1

(
K −Q+ q
q + j − 1

)[
ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)

]j
× exp {−δ[ρ− ξ(ρ+ α− ρα)]}

×
j−1∑
m=0

δm

m!
[ρ− ξ(ρ+ α− ρα)]m.

(16)

Furthermore, the detection probability of the MRT is obtained
by averaging over ρ, i.e.,

PD =

∫ 1

ξα
1−ξ+ξα

PD| ρfρ(ρ) dρ, (17)

where fρ(ρ) is given in (7).

3.2.2. Mismatched Case

Here we consider the mismatched case where the actual tar-
get signal subspace deviates from the presumed subspace. To
quantify the mismatching, we define the angle ϕ between the
actual signal steering vector S0 and the nominal subspace S
as follows [4]

cos2 ϕ =
|tr(S†R−1S0)|2

tr(S†
0R

−1S0)tr(S†R−1S)
. (18)

Note that ϕ = 0 corresponds to the case where the actual
signal belongs to the nominal subspace. For the case of q = 1.
the subspace matrix S reduces to a steering vector denoted by
s, and the coordinate vector a becomes a scalar denoted by a.
The angle ϕ between the actual signal steering vector s0 and
the nominal subspace s becomes

cos2 ϕ =
|s†0R−1s|2

(s†R−1s)(s0R−1s0)
. (19)

Next, we derive a closed-form expression for the detection
probability of the MRT for the mismatched case with q = 1.
It is obtained in [23] that the PDF of ρ in the mismatched case
is

fmis
ρ (ρ) = exp(−ρΨϕ)

K−Q+2∑
n=0

(
K −Q+ 2

n

)
K!

(K + n)!

×Ψn
ϕgK−Q+2,Q+n−1(ρ),

(20)
where

Ψϕ = |a|2s†0R−1s0 sin
2 ϕ, (21)

and

gk,m(x) =
(k +m− 1)!

(k − 1)!(m− 1)!
xk−1(1− x)m−1 (22)

with 0 < x < 1. According to (16), the detection probability
conditioned on ρ in the case of q = 1 becomes

PD | ρ =1−
[

ρ

ρ− ξ(ρ+ α− ρα)

]−(K−Q+1)

×
K−Q+1∑

j=1

(
K −Q+ 1

j

)[
ξ(ρ+ α− ρα)

ρ− ξ(ρ+ α− ρα)

]j
× exp {−δ[ρ− ξ(ρ+ α− ρα)]}

×
j−1∑
m=0

δm

m!
[ρ− ξ(ρ+ α− ρα)]m,

(23)
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Fig. 1. Probability of false alarm of the MRT versus the de-
tection threshold for q = 2.

where the non-centrality parameter δ in the mismatched case
becomes

δ = |a|2s†0R−1s0 cos
2 ϕ. (24)

Therefore, the detection probability of the MRT with q = 1
can be expressed as

PD =

∫ 1

ξα
1−ξ+ξα

PD| ρf
mis
ρ (ρ) dρ, (25)

where PD| ρ and fmis
ρ (ρ) are given in (23) and (20), respec-

tively.
It should be pointed out that the detection probability of

the MRT is unavailable for the case of q > 1, since it is diffi-
cult to derive the PDF of ρ for the multi-rank subspace case.

4. NUMERICAL RESULTS

In this section, numerical simulations are conducted to con-
firm the validity of the above theoretical results. A uniform
linear array of 5 elements with a half-wavelength spacing is
used, i.e., Q = 5. Throughout this section, the (i, j)th ele-
ment of the noise covariance matrix is chosen to be [R]i,j =
σ20.95|i−j|, where the noise power σ2 is set to be 1. We se-
lect a = σ2

a[1, · · · , 1]T , where σ2
a is the target power. Define

the signal-to-noise ratio (SNR) as

SNR = 10 log10
σ2
a

σ2
. (26)

For comparison purposes, we consider the AMF, GLRT, and
ACE.

The probability of false alarm of the MRT with q = 2 as a
function of the detection threshold is shown in Fig. 1, where
the lines denote the results obtained with the finite-sum ex-
pression in (14), and the symbols “◦” represent the results
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Fig. 2. Detection probability versus cos2 ϕ in the mismatched
case.

obtained with MC simulations. The number of independent
trials used in each case is 106. It can be seen that the theoreti-
cal results are in good accordance with the simulation results.

In Fig. 2, the detection probability curves of the MRT
with q = 1 are plotted with respect to cos2 ϕ for SNR = 20 dB.
For comparison purposes, the ABORT proposed in [12], the
GLRT and ACE are also included. Note that we also conduct-
ed simulations on the performance of the AMF and observed
that the AMF is much more robust than the GLRT. This ob-
servation is well-known, and was also made in [12], [9]. For
clarity of exposition, the detection probability curve of the
AMF is not plotted in Fig. 2.

We can observe that the selectivity of the proposed MRT
can be flexibly controlled by adjusting the tunable parameter
α. More specifically, the rejection capabilities of mismatched
signals of the MRT increase as the tunable parameter α in-
creases. Interestingly, the MRT with α = 1 (i.e., the Rao test)
has rejection capacities of mismatched signals worse than the
ACE in the case of moderate SNR. However, we can select
larger α to improve the selectivity of the proposed MRT. For
example, the MRT with α = 10 has mismatched rejection
capabilities better than the ABORT, as shown in Fig. 2.

5. CONCLUSION

In this paper, we proposed the MRT by introducing a tunable
parameter. It subsumes the GLRT and Rao test as particular
cases. The performance of the proposed MRT is evaluated
in terms of the probabilities of false alarm and detection. It
is shown that the MRT has the CFAR property with respect
to the noise covariance matrix. Simulation results reveal that
the mismatched signal rejection capabilities of the proposed
MRT can be flexibly adjusted. Specifically, the mismatched
signal rejection capabilities improve as the tunable parameter
increases.
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