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ABSTRACT
How accurately can one estimate a deterministic parameter
subject to other unknown deterministic model parameters?
The most popular answer to this question is given by the
Cramér-Rao bound (CRB). The main assumption behind
the derivation of the CRB is local unbiased estimation of
all model parameters. The foundations of this work rely
on doubting this assumption. Each parameter in its turn is
treated as a single parameter of interest, while the other model
parameters are treated as nuisance, as their mis-knowledge
interferes with the estimation of the parameter of interest.
Correspondingly, a new Cramér-Rao-type bound on the mean
squared error (MSE) of non-Bayesian estimators is estab-
lished with no unbiasedness condition on the nuisance pa-
rameters. Alternatively, Lehmann’s concept of unbiasedness
is imposed for a risk that measures the distance between
the estimator and the locally best unbiased (LBU) estimator
which assumes perfect knowledge of the nuisance parame-
ters. The proposed bound is compared to the CRB and MSE
of the maximum likelihood estimator (MLE). Simulations
show that the proposed bound provides a tight lower bound
for this estimator, compared with the CRB.

Index Terms— Cramér-Rao bound, Lehmann unbiased-
ness, risk-unbiasedness, nuisance parameters, MSE

1. INTRODUCTION
In many estimation problems one is interested in estimating
parameters of interest, in the presence of other unknown pa-
rameters, referred to as nuisance. This issue has been ad-
dressed by Scharf [1, p. 231] and Kay [2, p. 431] for non-
Bayesian parameter estimation problems. They have shown
that the commonly used Cramér-Rao bound (CRB), intro-
duced in [3, 4], is tighter when joint unbiased estimation of
all the parameters is assumed. Gini [5] demonstrated how use
of estimates of the nuisance parameters, instead of their true
value, can improve the estimation mean squared error (MSE)
of the parameters of interest. The improvement of the MSE
was obtained by using a biased estimate of the parameter of
interest. However, the same example was then used to show
that by using the knowledge of the nuisance parameters, the
MSE can be decreased by choosing a proper class of biased
estimators, as intuition expects [6].

Due to its attractivity, variations of the CRB were derived
for the Bayesian [7] and the hybrid [8] frameworks. Also,
Cramér-Rao (CR)-type performance bounds for the problem
of non-Bayesian parameter estimation in the presence of ran-
dom nuisance parameters were vastly investigated, e.g. [8–
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12]. In a recent research, a new Bayesian CR-type bound was
developed for the problem of random parameter estimation
in the presence of deterministic nuisance parameters [13, 14].
This bound, named risk-unbiased bound (RUB) is based on
the novel concept of risk-unbiasedness, which combines two
approaches [15]. The first is Lehmann-unbiasedness criterion
[16], which generalizes the conventional mean-unbiasedness
to arbitrary cost functions, e.g. for periodic cost functions
[17–19] and for constrained parameter estimation [20]. The
second is the concept of risk-unbiased prediction [21], which
analyzes a new criterion for unbiasedness of Bayesian estima-
tors when a deterministic nuisance parameter is involved.

In array processing, the effect of nuisance parameters has
been mainly investigated in the context of direction-of-arrival
(DOA) estimation [22, 23]. For the commonly used so called
“deterministic” or “unconditional” model [24, 25], the num-
ber of parameters to be estimated grows with the number of
data samples taken. Nevertheless, the MLE has been proved
to be statistically efficient [26, Ch. 4].

In this paper, the problem of non-Bayesian multiple pa-
rameter estimation is addressed and a new CR-type lower
bound on the MSE is derived using the covariance inequal-
ity [27, p. 113] and the concept of risk-unbiasedness. While
the CRB assumes joint mean-unbiased estimation of all model
parameters, a different approach is adopted in this work. Each
parameter in its turn is treated as a single parameter of inter-
est, while the other model parameters are treated as nuisance,
as their misknowledge interferes with the estimation of the
parameter of interest. Correspondingly, we are guided by two
questions: (1) is it necessary to restrict unbiased estimation
of the nuisance parameters? and (2) is there a more appropri-
ate unbiasedness condition rather than the conventional mean-
unbiasedness? These questions are answered using the con-
cept of risk-unbiasedness.

The paper is organized as follows. Section 2 formulates
the problem of deterministic parameter estimation in the pres-
ence of other deterministic nuisance parameters and the con-
cept of risk-unbiased estimation is illustrated. This approach
is then used in Section 3 to derive a new CR-type bound. Sec-
tion 4 presents an example which demonstrates the main re-
sults. Finally, our conclusions appear in Section 5.

2. RISK-UNBIASEDNESS
Let (Ωx,F , Pψ) denote a probability space where Ωx ⊆ RN
is the observation space, F is the σ-algebra on Ωx, and
{Pψ}ψ∈Ψ is a family of parameterized probability measures,
such that the probability space has a finite second-order
statistical moment w.r.t. Pψ . The unknown deterministic
vector parameter ψ is divided into two parts, such that (s.t.)
ψ = [ϕ,θT ]T , where ϕ ∈ Φ ⊆ R is the parameter of interest,

2921978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



and θ ∈ Θ ⊆ RM is treated as the nuisance vector parameter.
Note that, each parameter in its turn can be treated as a single
parameter of interest, while the other model parameters are
treated as nuisance, as their mis-knowledge interferes with
the estimation of the parameter of interest. We are interested
to estimate the parameter of interest ϕ based on the random
observation vector x ∈ Ωx. Let fx(x;ψ) denote the obser-
vation probability density function (pdf) ofx parametrized by
ψ. E[·] stands for the expectation operator w.r.t. fx(x;ψ).
Given a scalar b, dependent of a ∈ RK , its gradient w.r.t. a
is organized as a row vector, whose jth element is defined as[

db(a)
da

]
j
, ∂b(c)

∂cj

∣∣∣
c=a

, and db(a)
dT a

,
(

db(a)
da

)T
. Given a vector

b, dependent of a, its derivative w.r.t. a is a matrix whose
j, k entry is defined as

[ db
da

]
j,k

, ∂bj(c)
∂ck

∣∣∣
c=a

. The Hessian
matrix of a scalar b w.r.t. a is a K × K matrix defined by
d2b(a)
dadT a

, d
da

( db
dT a

)
. ‖ · ‖ indicates the Euclidean norm. We

further assume the Fisher information matrix (FIM) for esti-
mation of ψ exists and is non-singular. The FIM is defined
and given in the block form

I(ψ) ,

[
Iϕϕ(ψ) Iϕθ(ψ)
Iθϕ(ψ) Iθθ(ψ)

]
, (1)

where Iϕϕ(ψ) , E
[
`2ϕ(x;ψ)

]
,ITϕθ(ψ) , Iθϕ(ψ) ,

E [`θ(x;ψ)`ϕ(x;ψ)], Iθθ(ψ) , E
[
`θ(x;ψ)`Tθ (x;ψ)

]
,

`ϕ(x;ψ) , ∂ log fx(x;ψ)
∂ϕ , and `θ(x;ψ) , ∂ log fx(x;ψ)

∂T θ
.

When θ is known, the CRB for estimation of ϕ is given by
I−1ϕϕ(ψ), while for an unknown θ it takes the form of
BCRB(ψ) , I−1ϕϕ(ψ)+

Iϕθ(ψ)
(
Iθθ(ψ)− Iθϕ(ψ)I−1ϕϕ(ψ)Iϕθ(ψ)

)−1
Iθϕ(ψ), (2)

satisfying BCRB(ψ) ≥ I−1ϕϕ(ψ) (see for example [1, p. 231]
and [2, p. 431]). This bound assumes mean-unbiasedness for
both the parameter of interest, ϕ, and the nuisance parame-
ters, θ.

Denote by L2, the Hilbert space of absolutely square-
integrable measurable functions w.r.t. Pψ for the measurable
space (Ωx,F). The function ϕ̂(x) is an estimator of ϕ with
estimation error ε = ϕ̂(x)−ϕ. Under the MSE criterion the
risk is defined as L(ϕ̂,ψ) , E[ε2]. Let Uθ ⊂ L2 denote the
space of locally mean-unbiased estimators of ϕ, defined as
(see (19)-(21) in [28] and (5),(6) in [29])

Uθ ,

{
ϕ̂(x) ∈ L2 :

E [ϕ̂(x)−ϕ] = 0,
E [(ϕ̂(x)−ϕ) `ϕ(x;ψ)] = 1.

}
(3)

We mark that the elements of Uθ may be functions of x, θ,
and the subjected value of ϕ, which is omitted from the nota-
tion for simplicity. Also, Uθ can be easily verified to be con-
vex. When θ is known, the optimal estimator in Uθ, known as
the locally best unbiased (LBU) estimator, is given by [3, 4]

ϕ̂LBU (x,θ) = ϕ+ I−1ϕϕ(ψ)`ϕ(x;ψ). (4)
The estimation error of the LBU estimator is εLBU (x,ψ) =
ϕ̂LBU (x,ψ)−ϕ. Using the LBU estimator, the MSE risk can

be rearranged as:

L(ϕ̂,θ) =E
[
((ϕ̂(x)−ϕ̂LBU (x,θ)) + (ϕ̂LBU (x,θ)−ϕ))

2
]

=E
[
ε2LBU (x,θ)

]
+ E

[
(ϕ̂(x)−ϕ̂LBU (x,θ))

2
]

+

2E [εLBU (x,θ) (ϕ̂(x)−ϕ̂LBU (x,θ))] . (5)
Since Uθ is a convex subspace of the Hilbert space L2, the
Hilbert projection theorem [30, p. 79-80] states that the cross-
term E [εLBU (x,θ) (ϕ̂(x)−ϕ̂LBU (x,θ))] in the right hand
side (r.h.s.) of (5) is non-negative. Thus,

L(ϕ̂,θ)≥E
[
ε2LBU (x,θ)

]
+E
[
(ϕ̂(x)−ϕ̂LBU (x,θ))

2
]
. (6)

The term E[ε2LBU (x,θ)] in the r.h.s. of (6) is independent of
ϕ̂(x) and is given by

E[ε2LBU (x,θ)] = I−1ϕϕ(ψ). (7)
Similar to the approach used in [13, 15] for the Bayesian
framework, our focus is now turned to a modified risk, de-
fined by the first term in the r.h.s. of (6), s.t.

R(ϕ̂,θ) , E[(ϕ̂(x)−ϕ̂LBU (x,θ))2]. (8)

This modified risk redefines the estimation problem of ϕ via
a measure of “closeness” between a valid estimator from the
class Uθ and the optimal estimator in the class, which assumes
perfect knowledge of θ. Correspondingly, the modified esti-
mation error and the modified cost function are given by

zϕ̂(x,θ) , ϕ̂(x)−ϕ̂LBU (x,θ) (9a)

rϕ̂(x,θ) , z2ϕ̂(x,θ), (9b)
respectively. We mark that the estimators ϕ̂(x), ϕ̂LBU (x,θ) ∈
Uθ satisfy

E [ϕ̂(x)−ϕ] = E [ϕ̂LBU (x,θ)−ϕ] = 0, (10a)

E [(ϕ̂(x)−ϕ) `ϕ(x;ψ)] =

E [(ϕ̂LBU (x,θ)−ϕ) `ϕ(x;ψ)] = 1. (10b)
By subtracting the r.h.s. from the left-hand side (l.h.s.) of the
first equality in each of (10a) and (10b) one obtains

E [zϕ̂(x,θ)] = 0, (11a)
E [zϕ̂(x,θ)`ϕ(x;ψ)] = 0. (11b)

In order to provide an appropriate unbiasedness crite-
rion for the modified cost function, in addition to the con-
straints in (11) we utilize Lehmann’s concept of unbiased-
ness, which was first introduced in the context of arbitrary
cost functions in the non-Bayesian framework [16]. The
Lehmann-unbiasedness definition [16] implies that an esti-
mator is unbiased if on the average it is “closest” to the true
parameter, ϕ, rather than to any other value in the parameter
space, η ∈ Φ. The measure of “closeness” between the esti-
mator and the parameter is the cost function C(ϕ̂(x),ϕ). It
is shown in [17–20] that under the quadratic cost function,
C(ϕ̂(x), ϕ) = (ϕ̂(x)−ϕ)2, the Lehmann-unbiasedness is re-
duced to the conventional mean-unbiasedness, E[ϕ̂(x)] = ϕ.
Applying Lehmann-unbiasedness condition to the risk in (8),
leads to the following definition.
Definition 1. The estimator ϕ̂(x) ∈ Uθ is said to be point-
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wise risk-unbiased at θ if
Eψ[rϕ̂(x,θ)] ≤ Eψ[rϕ̂(x,η)] , ∀η ∈ Θ, (12)

where we used the subscript ψ in the notation of the expec-
tation to mark the subjected value of ψ. If (12) is satisfied
for θ ∈ Θ and for θ + ∆θ ∈ Θ, where ∆θ → 0M , then
ϕ̂(x) ∈ Uθ is said to be locally risk-unbiased around θ. If
(12) is satisfied ∀θ ∈ Θ, then ϕ̂(x) ∈ Uθ is said to be uni-
formly risk-unbiased .

The next theorem states some mild regularity conditions
which simplify the above definition.
Theorem 1. If ϕ̂LBU (x,η) is once differentiable w.r.t. η for
a.e. x ∈ Ωx, a necessary condition for the estimator ϕ̂(x) to
be point-wise risk-unbiased at ψ, is given by:

E [zϕ̂(x,θ)d(x,ψ)] = 0M (13)

where d(x,ψ) , ∂ϕ̂LBU (x,θ)
∂T θ

and 0M is a column vector
of length M , whose entries are equal to 0. If, in addition,
ϕ̂LBU (x,η) is twice differentiable w.r.t. η and E [rϕ̂(x,η)]
is convex in η, then the condition in (13) is also sufficient.
Proof. The proof follows the proof of Theorem 2 in [13].
Thus, equation (13) can be utilized as an alternative definition
for point-wise risk-unbiasedness.

Following the conclusions of Theorem 1, the next propo-
sition simplifies the condition for local risk-unbiasedness.
Proposition 2. An alternative condition for the estimator
ϕ̂(x) to be locally risk-unbiased around θ is given by (13)
and

E [zϕ̂(x,θ)H(x,θ)] = Cdd(ψ), (14)
where

Cdd(ψ) , E
[
d(x,ψ)dT (x,ψ)

]
, (15a)

H(x,ψ) ,
∂2ϕ̂LBU (x,θ)

∂θ∂Tθ
+ d(x,ψ)`Tθ (x;ψ), (15b)

are assumed to exist and to be well defined.
Proof. The proof follows the proof of Proposition 3 in [13].

3. MSE LOWER BOUND FOR RISK-UNBIASED
ESTIMATORS

In this section, a non-Bayesian bound on the MSE of risk-
unbiased estimators is derived. The covariance inequality [27,
p. 113] is given by:

E[u2] ≥ E[uvT ]E−1[vvT ]E[vu]. (16)
By setting u = zϕ̂(x,θ), the l.h.s. of (16) turns into the mod-
ified risk while the r.h.s. constitutes a lower bound. Thus,
back-substitution of (16) with (7) into (6) results in a lower
bound for the MSE of ϕ̂(x), given by

L(ϕ̂,θ) ≥ BRUCRB(ϕ,θ) ,

I−1ϕϕ(ψ) + E[uvT ]E−1[vvT ]E[vu]. (17)

Denote h(x,θ) = vec(H(x,θ)), where vec(·) stands for
the vectorization operation. Following the constraints on
zϕ̂(x,θ) in (10), (13), and (14), we set v =

[
1, `ϕ(x;ψ),

dT (x,θ),hT (x,θ)
]T

, s.t.

E[uvT ] =
[
0, 0,0TM , vec

T (Cdd(ψ))
]
, (18)

and (19) on the bottom of this page, where
Chd(ψ) , CT

dh(ψ) , E[h(x,ψ)dT (x,ψ)], and
Chh(ψ) , E[h(x,ψ)hT (x,ψ)]. Substituting (18) and (19)
into (17) yields a lower bound on the MSE locally risk-
unbiased estimators around θ, named risk-unbiased CRB
(RUCRB).

The conventional CRB is based on the derivative of the
observation likelihood function. It is used as a measure of
the sensitivity of the observations distribution to the varia-
tions in the neighborhood of the deterministic parameters of
interest. Equations (17)-(19) show that the RUCRB provides
a small error bound, which is based on local variations. Like
the CRB, it utilizes the derivative of the observation likeli-
hood function. However, it also incorporates the first- and
the second-order derivatives of the LBU estimator. These
two additions are used as a measure of the sensitivity of the
LBU estimator to the perturbations around the deterministic
nuisance parameters. Hence, the proposed bound provides
prediction of the performance for estimators that mimic the
dependency of the LBU estimator on the deterministic nui-
sance parameters.

4. EXAMPLE - SIGNAL ESTIMATION
In this example, we examine the problem of source signal es-
timation using an array of P sensors. Consider the following
observation model:

xn = vsn + wn, n = 1, . . . , N, (20)
where s = [s1, . . . , sN ]T ∈ CN is a sequence of unknown
deterministic variables, v ∈ CP is an unknown determinis-
tic normalized steering vector, {wn}Nn=1 is a white complex
proper Gaussian random noise vector sequence with a known
covariance matrix σ2

wIP , and IP is an identity matrix of size
P . Since both s and v are unknown, this model consists
of ambiguity, as these sizes can be estimated up to a com-
plex scaling factor. Several approaches may be used to over-
come this difficulty, such as assuming a constant Euclidean
norm of v. However, this would require using the tools of
constrained parameter estimation. Instead, we choose to re-
fer to v as being normalized by its first element, s.t. with-
out loss of generality v1 = 1. The vector of the parame-
ters of interest is given by ϕ ,

[
s1r, s1q . . . , sNr, sNq

]T ∈
R2N , where the subscripts r and q denote the real and imag-
inary parts, respectively. The RUCRB for estimation of ϕ

E
[
vvT

]
=


1 0 E

[
dT (x,ψ)

] [
hT (x,ψ)

]
0 Iϕϕ(ψ) E

[
dT (x,ψ)`ϕ(x;ψ)

] [
hT (x,ψ)`ϕ(x;ψ)

]
E [d(x,ψ)] E [d(x,ψ)`ϕ(x;ψ)] Cdd(ψ) Cdh(ψ)
E
[
h(x,ψ)

]
E [h(x,ψ)`ϕ(x;ψ)] Chd(ψ) Chh(ψ)

 (19)
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is evaluated by summing over the RUCRBs obtained from
setting ϕ as sn, for each n = 1, . . . , N . The LBU estima-
tor of sn from x =

[
xT1 , . . . ,x

T
N

]T
for a known value of

θ =
[
v2r , v2q . . . , vPr , vPq

]T ∈ R2(P−1) can be verified to
be given by

ŝnLBU
(x,θ) =

vHx

‖v‖2
, (21)

where the superscript H denotes the conjugate transpose op-
erator. The logarithm of the observation pdf of x is

log f (x; s,v) = −NP log(πσ2
w)−

N∑
n=1

‖xn − vsn‖2

σ2
w

. (22)

Following [31], one can evaluate the FIM for estimation ofψ.
By taking the inverse of the FIM, the CRB for estimation of s
can be verified to take the form

BCRB(sn) =
σ2
w

1− |sn|
2

‖s‖2
, ∀n = 1, . . . , N. (23)

The proposed bound can be computed by using (17), (21),
and (23). For each experiment, the MLE of s is obtained by
maximizing log fx(x; s,v) w.r.t. s and v, s.t.

v̂ML = arg max
v:v1=1

N∑
n=1

|vHxn|2

‖v‖2
,

ŝnML
=

v̂HMLxn
‖v̂ML‖2

, ∀n = 1, . . . , N.

(24)

Fig. 1 presents the MSE of the MLE, the CRB, and the
proposed RUCRB for estimation of s1 versus N . The MSE
was evaluated using 100,000 Monte-Carlo simulations with
σ2
w = 1, P = 2, s = 1N , and v = 1P , where 1N is a column

vector of lengthN , whose entries are equal to 1. The RUCRB
provides a tight and a valid bound for all sample sizes. As the
number of measurements increases, the CRB and the RUCRB
coincide and provide a tight and asymptotically achievable
lower bound for the MLE, as expected. However, when turn-
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Fig. 1. The CRB, the proposed RUCRB, and the MSE of
MLE for SNR = 0dB.
ing to the other side of asymptotic performance analysis, that
is for large SNR values, a different picture is drawn. The nor-
malized MSE (that is, the MSE divided by σ2

w) of the MLE,
the CRB, and the proposed RUCRB for estimation of s ver-
sus SNR are presented in Fig. 2, where SNR , |s1|2

σ2
w

. The

MSE was evaluated using 100,000 Monte-Carlo simulations
with N = 4, P = 2, s = 1N , and v = 1P . While the CRB
does not provide a tight bound for the MSE of the MLE, the
RUCRB provides a tight and asymptotically achievable lower
bound for the MLE, for all SNR values.
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Fig. 2. The CRB, the proposed RUCRB, and the MSE of
MLE for N = 4.

5. CONCLUSION
In this paper, the problem of multiple parameter estimation
under the non-Bayesian framework is explored and a new
Cramér-Rao-type bound for the MSE is developed. Unlike
the CRB, the proposed bound does not assume unbiasedness
for all the model parameters. Alternatively, the proposed RU-
CRB treats a single parameter as the parameter of interest,
and the other parameters as nuisance. The bound assumes
risk-unbiased estimation which is more appropriate for the
case of multiple parameters. It was shown that for the prob-
lem of source signal estimation using an array of sensors, the
proposed bound provides a tight and valid bound on the per-
formance of the MLE, while the CRB is not tight.
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